Morphophysiological and biochemical changes in Enterolobium contortisiliquum seedlings under abiotic stresses

Adriana dos Santos Ferreira, Caio César Pereira Leal, Moadir de Sousa Leite, Clarisse Pereira Benedito, Alek Sandro Dutra, Charline Zaratin Alves, Elís Regina Costa de Morais, Márcio Dias Pereira, Marco Porceddu, Gianluigi Bacchetta, Salvador Barros Torres

Resumo


Among the main problems that compromise the development of forest species are water and salt stresses, especially in the early stages of development, when seedlings are more sensitive. Thus, the objective of this study was to evaluate the morphophysiological and biochemical changes in Enterolobium contortisiliquum seedlings subjected to abiotic stresses. The experimental design was randomized complete blocks (RCB), composed of five treatments, with four replicates, and the experimental plot consisted of twenty plants. From the 31st day after sowing, when the seedlings reached approximately 15 cm in height, they began to receive the treatments, which consisted of different levels of electrical conductivity of irrigation water (0.3; 2; 4; 6; 8 dS m-1) for salt stress and periods of water restriction (0; 4; 8; 12 and 16 days without irrigation) for water stress. The traits evaluated were: plant height, root length, stem diameter, number of leaves, leaf area, total dry matter, Dickson quality index, height/shoot dry matter ratio, total soluble sugars, starch, total amino acids and proline. An increase in the electrical conductivity of irrigation water and days without irrigation compromised the development of E. contortisiliquum seedlings, which was intensified from 2 dS m-1 and four days without irrigation for salt and water stresses, respectively. The mechanism of survival of E. contortisiliquum to abiotic stresses involves reduction in the growth and quality of seedlings, with activation of biochemical defense mechanisms of the species.


Palavras-chave


Fabaceae. Dry forests. Semi-arid region. Salinity. Hydrical stress.

Texto completo:

PDF (English)

Referências


ABDEL-MARGEED, W. M. et al. Contortisiliosides H–M: Triterpenoid saponins from Enterolobium contortisiliquum and their biological activity. Industrial Crops and Products, v. 139, n. 1, p. 1-10, 2019.

AL-HUQAIL, A. A. et al. Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi Journal of Biological Sciences, v. 26, n. 7, p. 1856-1864, 2019.

AVRELLA, E. D. et al. Efeito da salinidade no desenvolvimento inicial de mudas de Mimosa scabrella Benth. Iheringia, Série Botânica, v. 74, n.4, p.1-10, 2019.

AZEREDO, G. A.; PAULA, R. C.; VALERI, S. V. Germinação de sementes de Piptadenia moniliformis Benth. sob estresse hídrico. Ciência Florestal, v. 26, n. 1, p. 193-202, 2016.

BATES, L. S.; WALDREN, R. P.; TEARE, I. Rapid determination of free proline for water stress studies. Plant Soil, v. 39, n. 1, p. 205-207, 1973.

BEZERRA, F. M. S. et al. Salt tolerance during the seedling production stage of Catharanthus roseus, Tagetes patula and Celosia argentea. Revista Ciência Agronômica, v. 51, n. 3, p. 1-9, 2020.

CAMPELO, D. H. et al. Características morfofisiológicas foliares e estado nutricional de seis espécies lenhosas em função da disponibilidade de água no solo. Ciência Florestal, v. 28, n. 3, p. 924-936, 2018.

DICKSON, A.; LEAF, A. L.; HOSNER, J. F. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chronicle, v. 36, n. 1, p. 10-13, 1960.

DIETZE, M. C. et al. Nonstructural carbon in woody plants. Annual Review of Plant Biology, v. 65, p. 667-687, 2014.

FERREIRA, A. S. et al. Production of Pityrocarpa moniliformis (Benth.) Luckow & R.W. Jobson (Fabaceae) seedlings irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 25, n. 3, p. 182-188, 2021.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011.

FRANÇA, P. H. T. et al. Análise fisiológica em mudas de guanandi (Calophyllum brasiliense Cambess.) submetidas ao déficit hídrico. Agropecuária Científica no Semiárido, v. 13, n. 4, p. 264-269, 2017.

FREITAS, E. C. S. et al. Crescimento e qualidade de mudas de Cassia grandis Linnaeus f. em resposta à adubação fosfatada e calagem. Ciência Florestal, v. 27, n. 2, p. 509-519, 2017.

GOMES, J. M.; PAIVA, H. N. Viveiros florestais: propagação sexuada. Viçosa: Editora UFV, 2013. 116 p.

LEAL, C. C. P. et al. Initial development of Combretum leprosum Mart. seedlings irrigated with saline water of different cationic natures. Revista Ciência Agronômica, v. 50, n. 2, p. 300-306, 2019.

LEHMANN, S. et al. Proline metabolism and transport in plant development. Amino Acids, v. 39, n. 4, p. 949-962, 2010.

LEITE, M. S. et al. Morphological and biochemical responses of Poincianella pyramidalis seedlings subjected to water restriction. Floresta e Ambiente, v. 27, n. 4, p. 1-7, 2020.

LEITE, T. S. et al. Ecophysiological and biochemical responses of two tree species from a tropical dry forest to drought stress and recovery. Journal of Arid Environments, v. 200, n.1, p. 104720, 2022.

LOPES, M. F. Q. et al. Crescimento de Erythrina velutina Willd. submetida a estresse salino e aplicação de ácido salicílico: Colloquium Agrariae, v. 15, n. 4, p. 31-38, 2019.

LÚCIO, D. M. et al. Differences in water deficit adaptation during early growth of brazilian dry forest Caatinga trees. Agriculture & Forestry, v. 63, n. 2, p. 59-68, 2017.

MITCHELL, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, v. 197, n. 3, p. 862-872. 2013.

MORRIS, D. L. Quantitative determination of carbohydrates with Drywood’s anthrone reagent. Science, v. 107, n. 3, p. 254-255, 1948.

NASCIMENTO, N. F.; NASCIMENTO, L. B. B.; GONÇALVES, J. F. C. Respostas funcionais foliares de plantas jovens de Hevea brasiliensis submetidas à deficiência hídrica e à reidratação. Ciência Florestal, v. 29, n. 3, p. 1019-1032, 2019.

SILVA, E. C et al. Drought and its consequences to plants – from individual to ecosystem. 2. ed. São Cristóvão (Brasil): AKINCI, S. (Ed.); 2013. Chapter 2, Responses of Organisms to Water Stress; p. 17-47.

SILVA, J. H. C. S.; AZERÊDO, G. A. Germination of cactus seeds under saline stress. Revista Caatinga, v. 35, n. 1, p. 79-86, 2022.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre - RS: Artmed, 2017. 731-858 p.

YEMM, E. W.; COCKING, E. F.; RICKETTS, R. E. The determination of amino-acids with ninhydrin. Analyst, v. 80, n. 948, p. 209-213, 1955.

YEMM, E. W.; WILLIS, A. J. The estimation of carbohydrates in plants extracts by anthrone. Biochemical Journal, v. 57, n. 3, p. 508-514, 1954.

ZHU, J. K. Abiotic stress signaling and responses in plants. Cell, v. 167, n. 2, p. 313-324, 2016.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.