Propagation potential of commercial pineapples and impact of the subculture interval on production planning

Erison Martins de Souza, Carlos Alberto da Silva Ledo, Everton Hilo de Souza, Fernanda Vidigal Duarte Souza

Resumo


Measuring the propagation potential of any variety, considering micropropagation to obtain the seedlings, has received little attention from researchers. The use of unusual statistical techniques, such as geometric growth rate and exponential regression, can produce important information for planning and applying subcultures based on their in vitro behaviour, which may indicate the need to improve the protocol and to better understand the effects of interval trials and subcultures. The aim of this study was to evaluate the effects of three different subculture intervals on the propagation potential of commercial pineapple cultivars, with the aim of optimising micropropagation protocols and planning for seedling production on a commercial scale. Axillary buds from the Perola, BRS Imperial and Smooth Cayenne cultivars were used for in vitro establishment and multiplication in trials with a subculture interval of 30, 45 and 60 days, in six subcultures. The BRS Imperial cultivar had the best results in the 30-day trial. Although the number of shoots increases as the subcultures progress, the propagation potential is lower. Longer subculture intervals show lower shoot production and propagation potential, as demonstrated by the geometric growth rate and the Poisson log-linear models. The trials and statistical tools employed showed that the protocol needs adjusting to improve production in the Smooth Cayenne cultivar, which had the lowest propagation potential.


Palavras-chave


In vitro behaviour. Geometric growth rate. Poisson log-linear models.

Texto completo:

PDF (English)

Referências


BARTHOLOMEW, D. P. History and perspectives on the role of ethylene in pineapple flowering. Acta Horticulturae, The hague, v.1042, p.269-283, 2014.

CID, L. P. B.; TEIXEIRA, J. B. Explante, meio nutritivo, luz e temperatura. In: CID, L. P. B. (Ed.) Cultivo in vitro de plantas. Brasília, DF: Embrapa Informação Tecnológica, 2010. p.15-49.

COPPENS D’EECKENBRUGGE, G.; GOVAERTS, R. Synonymies in Ananas (Bromeliaceae). Phytotaxa, Auckland, n.239, p.273-279, 2015.

DEY, K. K.; GREEN, J. C.; MELZER, M.; BORTH, W.; HU, J. S. Mealybug wilt of pineapple and associated viruses. Horticulturae, v. 4, n. 52, 2018.

FAO - ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA AGRICULTURA E ALIMENTAÇÃO (2019) Production of pineapple: top 10 producers. Disponível em: em: Acesso em: 28 fev. 2022.

FARAHANI, F. Micropropagation and growth of in vitro pineapple (Ananas comosus Merr) in Iran. Plant Archives, Muzaffarnagar, v.14, n.1, p.337-341, 2014.

FRANCO, L. R. L.; MAIA, V. M.; LOPES, O. P.; FRANCO, W. T. N.; SANTOS, S. R. Crescimento, produção e qualidade do abacaxizeiro ‘Pérola’sob diferentes lâminas de irrigação. Revista Caatinga, v. 27, n. 2, p. 132-140, 2014.

GRATTAPAGLIA, D.; MACHADO, M. A. Micropropagação. In: TORRES, A. C.; CALDAS, L. S.; BUSO, J. A. Cultura de tecidos e transformação genética de plantas. Brasília: EMBRAPA-CNP1-1, v.1, 1998. p. 183-260.

GUERRA, P. A.; SOUZA, E. H.; MAX, D. A. S.; ROSSI, M. L.; OLIVEIRA, A. V.; LEDO, C. A. S.; MARTINEZ-MONTERO, M. E.; SOUZA, F. V. D. Morphoanatomical aspects of the starting material for the improvement of pineapple cryopreservation by the droplet-vitrification technique. Crop science, Annals of the Brazilian Academy of Sciences, v. 93, 2021.

HAMAD, A. M.; TAHA, R. M. Effect of sequential subcultures on in vitro proliferation capacity and shoot formations pattern of pineapple (Ananas comosus L. Merr. over diferente incubation periods. Scientia Horticulturae, v 117, n. 4, p. 329-334, 2008.

KOFI, O. F.; ADACHI, T. Effect of cytokinins on the proliferation of multiple shoots of pineapple in vitro. SABRAO J, v. 25, n. 1, p. 59–69, 1993.

MENDES, B. M. J.; FILIPPI, S. B.; DEMÉTRIO, C. G. B.; RODRIGUEZ, A. P. M. A Statistical approach to study the dynamics of micropropagation rates, using banana (Musa spp.) as an exemple. Plant Cell Reports, v. 18, n. 12, p. 967-971, 1999.

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia plantarum, Copenhagen, v. 15, p. 473-497, 1962.

NELSON, B, J.; ASARE, P. A.; ARTHUR JUNIOR, R. In vitro growth and multiplication of pineapple under different duration of sterilization and different concentrations of benzylaminopurine and sucrose. Biotechnology, Faisalãbãd, v.14, n.1, p.35-40, 2015.

PEREIRA, J. E. S.; MATTOS, M. L. T.; FORTES, G. R. L. Identificação e controle com antibióticos de bactérias endofíticas contaminantes em explantes de batata micropropagados. Pesquisa Agropecuária Brasileira, Brasília, v. 38, n. 7, p. 827-834, jul. 2003.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/.

REINHARDT, D. H.; BARTOLOMEU, D. P.; SOUZA, F. D. V.; CARVALHO, A. C. P. P.; PÁDUA, T. R. P.; JUNGHANS, D. T.; MATOS, A. P. Advances in pineapple plant propagation. Revista Brasileira de Fruticultura, Jaboticabal, v.40, n.6, p.1-10, 2018.

REINHARDT, D. H.; CABRAL, J. R. S.; MATOS, A. P.; JUNGHANS, D. T. ‘BRS Ajubá’, a new pineapple cultivar resistant to fusariosis and adapted to subtropical conditions. Acta Horticulturae, The Hague, v. 928, p. 75-79, 2012.

SANTOS, F. C.; RAMOS, J. D.; PASQUAL, M.; REZENDE, J. C.; SANTOS, F. C.; VILLA, F. Micropropagação do maracujazeiro-do-sono. Ceres, v. 57, n. 1, 2015.

SCHERER, R. F.; GARCIA, A. C.; FRAGA, H. P. F.; DAL VESCO, L. L.; STEINMACHER, D. A.; GUERRA, M. P. Nodule cluster cultures and temporary 54 immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Scientia horticulture – Amsterdam, v. 151, p. 38-45, 2013.

SENA NETO, A. R.; ARAUJO, M. A. M.; BARBOZA, R. M. P.; FONSECA, A. S.; TONOLI, G. H.; SOUZA, F. V. D.; MATTOSO, L.H.C.; MARCONCINI, J. M. Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial crops production. v. 64, p. 68–78, 2015.

SILVA, R. L.; FERREIRA, C. F.; LÊDO, C. A. S.; SOUZA, E. H.; COSTA, M. A. P. C.; SOUZA, F. V. D. Viability and genetic stability of pineapple germplasm after 10 years of in vitro conservation. Plant Cell, Tissue and Organ Culture (Print), p. 1-11, 2016.

SOUZA, E. H.; SOUZA, F. V. D.; COSTA, M. A. C.; COSTA Jr., D. S.; SANTOS-SEREJO, J. A.; AMORIN. E. P.; LEDO, C. A. S. Genetic variation of the Ananas genus with ornamental potential. Genetic Resources and Crop Evolution, v. 58, p. 23-40, 2012.

STATSOFT INC. Statistica for Windows (data analysis software system), version 7.1. Statsoft, Tulsa, Oklahoma (USA), 2005.

TURNER-HISSONG, S. D.; MABRY, M. E.; BEISSINGER, T. M.; ROSS-IBARRA, J.; PIRES, C. Evolutionary insights into plant breeding. Current Opinion in Plant Biology, 2020.

USMAN, I. S.; ABDULMALIK, M. M.; SANI, A. L. A.; MUHAMMAD, A. S. Development of an efficient protocol for micropropagation of pineapple (Ananas comosus L. var. Smooth Cayenne). African Journal of Agricultural Research, Nairobi, v.8, n.18, p.2053-2056, 2013.

WERNER, E. T.; MOTTA, L. B.; MARTINS, M. Q.; LIMA, A. B. P.; SCHMILTD, E. R. Coeficiente de variação como medida da precisão em experimentos de cultura de tecidos de plantas. Plant cell culture e micropropagation, Lavras, v. 8, n. 1-2, p. 27-36, 2012.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.