Seed vigor, genotype and proline in common bean germination under drought and saline stress

Matheus Santin Padilha, Cileide Maria Medeiros Coelho, Ânderson Scalvi Sommer


The main causes of the reduction in the percentage of field emergence are the occurrence of abiotic stresses, especially water and saline stress. Both cause osmotic stress and induce the production of free proline. Several studies associate the higher concentration of proline with the tolerance of cultivars to these stresses. However, it is necessary to determine how genotype and seed vigor act during seedling formation in presence stresses and how proline concentration interacts with these factors. The objective of this work was to evaluate how high vigor seeds respond to water and salt stress, as well as to determine if there is an association of proline with high vigor seeds. The cultivars BAF07, BAF13, BAF23, BAF42, BAF44, BAF55 and BAF112 were used, which were subjected to germination under water and saline stress. At ten days after sowing, the length, dry mass of the seedlings and capacity to mobilize reserves were evaluated, as well as the free proline content of the seedlings. Seed vigor and tolerant genotypes influences the overcoming of water and saline stresses and should be used as a strategy during sowing, and the higher proline concentration is not associated with higher vigor of the seed lot or tolerance.


Produção Vegetal

Texto completo:

PDF (English)


AFLAKI, F., et al. Investigation of seed germination indices for early selection of salinity tolerant genotypes: A case study in wheat. Emirates Journal of Food and Agriculture, v. 29, n. 3, p. 222-226, 2017.

ANDRADE, G. C. D.; COELHO, C. M. M.; PADILHA, M. S. Seed reserves reduction rate and reserves mobilization to the seedling explain the vigour of maize seeds. Journal of Seed Science, v. 41, n. 4, p. 488-497, 2019.

ARAUJO-NETO, A. C. et al. Germinação e crescimento inicial de Vigna unguiculata (L.) Walp. sob estresse salino. Revista de Ciências Agrárias, v. 43, n. 3, p. 283-292, 2020.

ARTEAGA, S. et al. The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy, v. 10, n. 6), p. 817, 2020.

AVCI, S.; İLERI, O.; DEMIRKAYA, M. Determination of Genotypic Variation among Sorghum Cultivars for Seed Vigor, Salt and Drought Stresse. Journal of Agricultural Sciences, v. 23, n.3, p. 335-343, 2017.

BATES, L. S.; WALDREN, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and soil, v. 39, n. 1, p. 205-207, 1973.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, DF: Secretaria de Defesa Agropecuária/Mapa/ACS, 2009. 388 p.

CASTAN, D. O. C.; GOMES-JUNIOR, F. G.; MARCOS-FILHO, J. Vigor-S, a new system for evaluating the physiological potential of maize seeds. Scientia Agricola, v. 75, n. 2, p. 167-172, 2018.

CHEN, J. et al. Molecular cloning and characterization of a gene encoding the proline transporter protein in common bean (Phaseolus vulgaris L.). The Crop Journal, v. 4, n. 5, p. 384-390, 2016.

DANTAS, S. A. G. et al. Strategy for selection of soybean genotypes tolerant to drought during germination. Genetics and Molecular Research, v. 16, n. 2, gmr16029654, 2017.

EL-MOUKHTARI, A. et al. How does proline treatment promote salt stress tolerance during crop plant development?. Frontiers in plant science, v.11 n. 1127, p. 1-16, 2020.

EHRHARDT-BROCARDO, N. C. M.; COELHO, C. M. M. Hydration patterns and physiologic quality of common bean seeds. Semina: Ciências Agrárias, v. 37, n. 4, p. 1791-1799, 2016.

FINCH-SAVAGE, W. E.; BASSEL, G. W. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of experimental botany, v.67, n. 3, p.567-591, 2016.

GINDRI, D. M. et al. (2017). Seed quality of common bean accessions under organic and conventional farming systems. Pesquisa Agropecuária Tropical, v. 47, n. 2, p. 152-160, 2017.

JOVOVIĆ, M. et al. Effect of salinity and drought stress on germination and early seedlings growth of bread wheat (Triticum aestivum L.). Genetika-Belgrade, n. 50, v. 1, p. 285-298, 2018.

KAKAR, N. et al. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice, v. 12, n.1, p.1-14, 2019.

KRZYZANOWSKI, F. C., et al. Testes de vigor baseados no desempenho das plântulas. In: F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, J. Marcos-Filho. Vigor de sementes: conceitos e testes. 2. ed. Londrina, PR: ABRATES, 2020. Cap. 2, p. 79-140.

LIU, L. et al. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science, v. 9, n. 275, p. 1-9, 2018.

MAIA, J. M. et al. Seca e salinidade na resposta antioxidativa de raízes de feijão caupi. Journal of Biology & Pharmacy and Agricultural Management, v. 11, n.1, p. 59-93, 2015.

MANSOUR, M. M. F.; ALI, E. F. Evaluation of proline functions in saline conditions. Phytochemistry, n. 140, v.7, p. 52-68, 2017.

MARCOS-FILHO, J. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, v. 72, n. 4, p.363-374, 2015.

MOROSAN, M. et al. Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars. The EuroBiotech Journal, v. 1, n.3, p. 247-252, 2017.

NADEEM, M. et al. Research progress and perspective on drought stress in legumes: a review. International journal of molecular sciences, v. 20, n. 10, p. 2541, 2019.

PANTOLA, S.; BARGALI, K. V.; BARGALI, S. S. Screening of three leguminous crops for drought stress tolerance at germination and seedling growth stage. Indian Journal of Agricultural Sciences, v.87, n.4, p. 467-472, 2017.

PER, T. S. et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant physiology and biochemistry, v. 115, n. 6, p. 126-140, 2017.

PEREIRA, W. A.; PEREIRA, S. M. A.; DIAS, D. C. F. D. S. Dinâmica de reservas das sementes de soja durante o desenvolvimento de plântulas de diferentes cultivares comerciais. Journal of Seed Science, v. 37, n. 1, p. 63-69, 2015.

R CORETEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2020. Available in: .

SAKO, Y. et al. A system for automated seed vigour assessment. Seed science and technology, v. 29, n. 3, p. 625-636, 2001.

SILVA, L. J. D.; MEDEIROS, A. D. D.; OLIVEIRA, A. M. S. SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, v. 41, n. 2, p. 250-257, 2019.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed Editora, 2017. 858 p.

VILLELA, F. A.; DONI FILHO, L.; SEQUEIRA, E. L. Tabela de Potencial Osmótico em Função da Concentração de Polietilleno Glicol 6000 e da Temperatura. Pesquisa agropecuária brasileira, v. 26, n. 11-12, p. 1957-1968, 1991.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.