Physiological responses of sugar-apple seedlings under saline wastewater irrigation and NPK doses

Antônia Adailha Torres Souza, Vander Mendonça, Emanoela Pereira de Paiva, Kleane Targino Oliveira Pereira, KEIVIANNE DA SILVA LIMA REGES, Romulo Carantino Lucena Moreira, Pedro Dantas Fernandes, Francisco Vanies da Silva Sá

Resumo


Salt stress stands out as one of the main limiting factors in agricultural production in arid and semi-arid regions, due to its osmotic and ionic effects on plants. In this context, the objective was to evaluate the physiological responses of sugar-apple seedlings irrigated with saline wastewater under different doses of NPK. The experiment was carried out in a greenhouse, in a randomized block design, in a 3 x 5 factorial scheme, with four replicates. Three irrigation waters were tested: local-supply water (control), reject brine and fish farming effluent, and five doses of NPK, referring to the proportions of 25, 50, 75, 100, and 125% of the N:P:K fertilizer recommendation of 100:300:150 mg dm-3. Seedlings were cultivated in 2-dm3 containers filled with sandy soil for 90 days after sowing. At the end of this period, gas exchange, chlorophyll fluorescence, and biomass accumulation were evaluated. The use of reject brine and fish farming effluent to irrigate sugar-apple seedlings reduced photosynthetic activity and biomass accumulation. The best physiological responses and biomass accumulation occur at NPK doses of 75% (75:225:112.5 mg dm-3 of N:P:K) for seedlings irrigated with local-supply water, 60% (60:180: 90 mg dm-3 of N:P:K) for seedlings irrigated with reject brine, and 40% (40:120:60 mg dm-3 of N:P:K) for seedlings irrigated with fish farming effluent.


Palavras-chave


Annona squamosa L. Salt stress. Leaf gas exchange. Photochemical efficiency. Photochemical quenching.

Texto completo:

PDF (English)

Referências


ANDRADE, F. H. A. et al. Effect of phosphorus application on substrate and use of saline water in sugar-apple seedlings. Pesquisa Agropecuária Tropical, v. 48, n. 2, p. 190-199, 2018.

AYERS, R. S.; WESTCOT, D. W. A qualidade de água na agricultura. 2. ed. Campina Grande: UFPB, 1999. 153 p.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: Mapa/ACS, 2009. 399 p.

DIAS, N. S. et al. Potential agricultural use of reject brine from desalination plants in family farming areas. In: TALEISNIK, E.; LAVADO, R. S. (ed.). Saline and Alkaline Soils in Latin America. Cham: Springer, 2021. cap. 5, p. 101-118.

FERREIRA, D. F. Sisvar: um guia dos seus procedimentos de comparações múltiplas Bootstrap. Ciência e Agrotecnologia, v. 38, n. 2, p. 109-112, 2014.

FIGUEIREDO, F. R. A. et al. Gas exchanges in sugar apple (Annona squamosa L.) subjected to salinity stress and nitrogen fertilization. Australian Journal of Crop Science, v. 13, n. 12, p. 1959-1966, 2019.

GUPTA, B.; HUANG, B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, v. 2014, n. 1, p. 1-18, 2014.

HUSSAIN, S. et al. Physiological analysis of salt stress behavior of citrus species and genera: low chloride accumulation as an indicator of salt tolerance. South African Journal of Botany, v. 81, n. 7, p. 103-112, 2012.

KRAMER, D. M. et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, v. 79, n. 1, p. 209-218, 2004.

LEMOS, E. E. P. The production of Annona fruits in Brazil. Revista Brasileira de Fruticultura, v. 36, p. 77-85, 2014. Número especial.

LIU, K. et al. Identification of phenological growth stages of sugar apple (Annona squamosa L.) using the extended BBCH-scale. Scientia Horticulturae, v. 181, n. 2, p. 76-80, 2015.

LIU, K.; YUAN, C.; JING, G. Effect of exogenous oxalic acid treatment on ripening and preservation of Annona squamosa L. fruits during postharvest storage. Food Scientia, v. 34, n. 14, p. 329-334, 2013.

MARLER, T. E.; ZOZOR, Y. Salinity influences photosynthetic characteristics, water relations, and foliar mineral composition of Annona squamosa L. Journal of the American Society for Science, v. 121, n. 2, p. 243-248, 1996.

NOVAIS, R. F.; NEVES, J. C. L.; BARROS, N. F. Ensaio em ambiente controlado. In: OLIVEIRA, A. J. et al. (org.). Métodos de pesquisa em fertilidade do solo. Brasília: Embrapa-SEA, 1991. p. 189-254.

OXBOROUGH, K.; BAKER, N. R. An instrument capable of imaging chlorophyll a fluorescence from leaves at very low irradiance and at cellular and subcellular levels of organization. Plant, Cell and Environment, v. 20, p. 1473-1483, 1997.

SÁ, F. V. S. et al. Balanço de sais e crescimento inicial de mudas de pinheira (Annona squamosa L.) sob substratos irrigados com água salina. Irriga, v. 20, p. 544-556, 2015.

SÁ, F. V. S. et al. Ecophysiology of West Indian cherry irrigated with saline water under phosphorus and nitrogen doses. Bioscience Journal, v. 35, n. 1, p. 211-221, 2019.

SÁ, F. V. S. et al. The right combination of N-P-K fertilization may mitigate salt stress in custard apple (Annona squamosa L.). Acta Physiologiae Plantarum, v. 43, n. 4, p. 1-12, 2021.

SANTOS, S. T. et al. Photochemical efficiency of basil cultivars fertigated with salinized nutrient solutions. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 24, n. 5, p. 320-325, 2020.

SILVA, A. R. et al. Biomass of sugar-apple seedlings under saline water irrigation in substrate with polymer. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, n. 9, p. 610-615, 2018.

SILVA, J. S. et al. Morphophysiology of mini watermelon in hydroponic cultivation using reject brine and substrates. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 25, n. 6, p. 402-408, 2021.

SILVA, L. A. et al. Mecanismos fisiológicos em híbridos de citros sob estresse salino em cultivo hidropônico. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, p. 1-7, 2014.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017.

TEIXEIRA, P. C. et al. Manual de métodos de análises de solo. 3. ed. Brasília: Embrapa, 2017. 573 p.

VOLKOV, V.; BEILBY, M. J. Salinity tolerance in plants: mechanisms and regulation of ion transport. Frontiers in Plant Science, v. 8, n. 10, p. 1795, 2017.

WAN, Q. et al. Salinity tolerance mechanism of osmotin and osmotin-like proteins: a promising candidate for enhancing plant salt tolerance. Current Genomics, v. 18, n. 6, p. 553-556, 2017.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.