Effect of combined thermal and water stress on germination of wheat seeds

Altamara Viviane de Souza Sartori, Carolina Maria Gaspar de Oliveira, Claudemir Zucareli, Alessandra Rodrigues Pereira, Cintia Sorane Good Kitzberger, Elizeu David dos Santos, Flávia Oliveira de Araújo


Combined abiotic stresses have different effects and responses than exposure to a single source of stress. The objective of this study was to evaluate the effect of the combined stress of supra-optimal temperatures and water deficit on the germination of wheat seeds with different levels of vigor. Wheat seeds from four different lots of the IPR Catuara cultivar were germinated at water potentials of 0.000, –0.075, –0.223, and –0.444 MPa, associated with temperatures of 20 °C, 24 °C, 28 °C, and 32 °C, totaling 16 stress combinations. The experimental design was completely randomized in a factorial scheme with four replications (four seed lots × 16 stress combinations), and means were compared using Scott-Knott 5%. We evaluated the germination of normal seedlings at 4 and 8 d, the activity of catalase and ascorbate peroxidase (APX), and the protein content of the aerial and root parts of wheat seedlings. Principal components analysis and hierarchical clustering were applied to the original matrix formed by the 16 combinations for the average of the four lots. Wheat seeds with higher vigor were more tolerant to combined water and thermal stress. Temperatures up to 28 °C and reduction of water potentials down to –0.223 MPa did not prejudice the germination process of wheat seeds. Regardless of temperature, a water potential of –0.444 MPa decreased the percentage and rate of germination. APX activity increased under water stress and supra-optimal temperatures, acting as a defense mechanism against oxidative stress.


Triticum aestivum L.. High temperature. Water deficit. Multiple stresses.

Texto completo:

PDF (English)


AL-SHEBLY, H.A.A.; AL-EBRAHEMI, F.K.K.; ALI, A.A. Effect of water quantity and coverage on seeds germination and their emergence in wheat crop triticum aestivum L. Plant Archives, v. 20, n. 1, p. 2091-2094, 2020.

AHMED, I. M. et al. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, v. 63, p. 49-60, 2013.

ALMAGHARABI, O. A. Impact of drought stress on germination and seedling growth parameters of some wheat cultivars. Life Science Journal, v.9, n.1, p. 590-598, 2012.

BARAKAT, N. et al. Antioxidant potential and oxidative stress markers in wheat (Triticum aestivum) treated with phytohormones under salt-stress condition. International Journal of Agriculture and Biology, v.15, n. 5, p.843-849, 2013.

BRADFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. v.72, n.1/2, p. 248-254, 1976.

BRASIL - Ministério da Agricultura e Reforma Agrária. Regras para Análise de Sementes. Brasília, 2009.

BURIRO, M. et al. Wheat seed germination under the influence of temperature regimes. Sarhad Journal Agriculture, v. 27, n. 4, p. 539-543, 2011.

DHANDA, S.S.; SETHI, G.S.; BEHL, R.K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science, v.190, p.6-12, 2004.

ESSEMINE, J.; AMMAR, S.; BOUZID, S. Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, v. 10, n. 6, p. 565-572, 2010.

ESPOSITO, M.P. et al. Oxidant-antioxidant balance and tolerance against oxidative stress in pioneer and non-pioneer tree species from the remaining Atlantic Forest. Science of the Total Environment, v.625, p.382-393, 2018.

GILL, S.S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry. V.48, p.909, 2010.

GIROTTO, L.; ALVES, J.D.; DEUNER. S.; ALBUQUERQUE, A.C.S.; TOMAZONI. A.P. Tolerância à seca de genótipos de trigo utilizando agentes indutores de estresse no processo de seleção. Revista Ceres, v. 59, n.2, p. 192-199, 2012.

GRZYBOWSKI, C. R. de S. et al. Efeito do potencial osmótico na interação genótipo e vigor de sementes de milho. Applied Research & Agrotechnology, v.12, n.3, p.65-73, 2019.

HAMPSON, C.R.; SIMPSON, G. M. Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum). I. Germination. Canadian Journal of Botany, v. 68, n. 3, p. 524-528, 1990.

KILIC, S.; KAHRAMAN, A. The Mitigation Effects of Exogenous Hydrogen Peroxide when Alleviating Seed Germination and Seedling Growth Inhibition on Salinity-Induced Stress in Barley. Pol. J. Environ. Stud., v. 25, n. 3, p.1053–1059, 2016.

MAGUIRE, J.D. Speed of germination—Aid in selection and evaluation for seedling emergence and vigor 1. Crop Science, v.2, n. 2, p.176-177, 1962.

MAHALINGAM, R., BREGITZER, P. Impact on physiology and malting quality of barley exposed to heat, drought and their combination during different growth stages under controlled environment. Physiology Plantarum, v. 165, p.277-28, 2019.

MHAMDI, A, NOCTOR, G, BAKER, A. Plant catalases: peroxisomal redox guardians. Archives of Biochemistry and Biophysics, v. 525, n. 2, p. 181-194, 2012.

MICHEL, B.E.; KAUFMANN, M.R. The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiology, v.51, n.5, p. 914–916, 1973.

MIGNOLET‐SPRUYT, L. et al. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Botany, v.67, n.13, p.3831-3844, 2016.

PANDEY, P.; RAMEGOWDA, V.; SENTHIL-KUMAR, M. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Science, v.6, n. 723, 2015.

PARTHEEBAN, C. et al. Effect of PEG induced drought stress on seed germination and seedling characters of maize (Zea mays L.) genotypes. International Journal of Current Microbiology and Applied Sciences, v. 6, n. 5, p. 1095-1104, 2017.

PEIXOTO, P.H.P. et al. Aluminum effects on lipid peroxidation and activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, Brasília, v.11, n.3, p.137-143, 1999.

PRAMANIK, S. K.; SIKDER, S. Thermal Unit Requirement and Grain Yield of Wheat under Non-Irrigated Dry Warmer Condition. Asian Journal of Research in Botany, v.4, n.2, p. 1-10, 2020.

RIBEIRO, L.C.; BORGHETTI, F. Comparative effects of desiccation, heat shock and high temperatures on seed germination of savanna and forest tree species. Austral Ecology, v. 39, n. 3, p. 267-278, 2014.

RODRIGUES, G.A.G. et al. Drought stress effects on germination and reserve degradation of Aspidosperma polyneuron seeds. Revista Brasileira de Ciências Agrárias, v. 14, n. 4, p. 1-10, 2019.

SIMONI, F. D et al. Sementes de Sorghum bicolor L.-Gramineae, submetidas ao estresse hídrico simulado com PEG (6000). Revista de Biologia e Ciências da Terra, v. 11, n. 1, p. 188-192, 2011.

SOUZA, M.A. de; RAMALHO, M.A.P. Controle genético e tolerância ao estresse de calor em populações híbridas e em cultivares de trigo. Pesquisa Agropecuária Brasileira, v. 36, p. 1245-1253, 2001.

TEIXEIRA, R. N. et al. Germinação e vigor de sementes de crambe sob estresse hídrico. Irriga, v. 16, n. 1, p. 42-51, 2011.

VIÇOSI, K. A. et al. Estresse hídrico simulado em genótipos de feijão, milho e soja. Revista de Agricultura Neotropical, v. 4, Suplemento 1, p. 36-42, 2017.

XU, Y.; ZHAN, C.; HUANG, B. Heat shock proteins in association with heat tolerance in grasses. International Journal of Proteomics, v.2011, p.1-11, 2011.

ZANDALINAS, S.I. et al. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, v. 162, n. 1, p. 2-12, 2018.

ZHANG, G. et al. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability. Scientific Reports, v.7, n.1, p. 1-13, 2017.

ZHENG, C. et al. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany, v.67, n.1, p. 222-227, 2009.

ZIMMER, P.D. Fundamentos da qualidade da semente. In: PESKE, S. T.; VILLELA, F. A.; MENEGHELLO, G. E. Sementes: fundamentos científicos e tecnológicos. 3ed., rev. e ampl., Pelotas: Ed. Universitária/UFPel, 2012, p. 105-160.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.