Glufosinate, nicosulfuron and combinations in the performance of maize hybrids with the pat gene

Rafael Wehrmeister, Alfredo Junior Paiola Albrecht, Leandro Paiola Albrecht, André Felipe Moreira Silva, Eduardo Seity Furlan Kashivaqui


Combinations of glufosinate with nicosulfuron, among other post-emergent herbicides, are promising for weed control in maize. However, some of these herbicides can cause injury and have other undesirable effects on the maize, so it is necessary to investigate their selectivity for cultivation. The aim of this study was to evaluate the selectivity of glufosinate, nicosulfuron and combinations, by analysing the agronomic performance of the crop for post-emergent application in maize hybrids with the pat gene. Two experiments were conducted in the state of Paraná, Brazil, during the 2019/2020 season, in a 2 x 8 (exp. I) and 2 x 4 (exp. II) factorial scheme. Two hybrids were used (FS505 PWU and FS715 PWU), with eight levels for the factor herbicide in experiment I (glufosinate, halosulfuron and glufosinate in combination with halosulfuron, nicosulfuron, atrazine, tembotrione or mesotrione, in addition to the control with no application) and four levels of herbicide in experiment II (nicosulfuron in two formulations, mesotrione, and the control). Injury to the maize plants and variables related to agronomic performance were evaluated. Although the herbicides had no effect on yield, it can be inferred that FS505 is more sensitive to nicosulfuron and mesotrione than is FS715, since the injury was greater than seen in FS715. The post-emergent application of glufosinate, nicosulfuron and combinations is selective for the FS505 PWU and FS715 PWU hybrids (with the pat gene). Despite injury, which was more pronounced in the FS505 PWU hybrid, there was no negative impact on yield or on other the variables of agronomic performance.


Zea mays L. Tank mixture. Mesotrione. Halosulfuron. Yield.

Texto completo:

PDF (English)


ALBRECHT, L. P. et al. Manejo de organismos geneticamente modificados tolerantes a herbicidas. In: BARROSO, A. A. M.; MURATA, T. Matologia: estudos sobre plantas daninhas. Jaboticabal: Fábrica da Palavra, 2021. p. 506-547.

ARAÚJO, G. V. et al. Effect of glyphosate and glufosinate on nutritional content and agronomic performance of maize possessing cp4epsps and pat transgenes. Australian Journal of Crop Science, v. 15, n. 5, p. 773-779, 2021.

ARMEL, G. R. et al. Mesotrione and glufosinate in glufosinate-resistant corn. Weed Technology, v. 22, n. 4, p. 591-596, 2008.

ARMEL, G. R. et al. Mesotrione, acetochlor, and atrazine for weed management in corn (Zea mays). Weed Technology, v. 17, n. 1, p. 284-290, 2003.

ÁVILA, M. C. R. et al. Seletividade inicial de mesotrione em função de modalidades de aplicação na cultura do milho doce. Revista Brasileira de Milho e Sorgo, v. 16, n. 3, p. 569-577, 2017.

CARVALHO, S. J. P. et al. Herbicide selectivity by differential metabolism: considerations for reducing crop damages. Scientia Agricola, v. 66, n. 1, p. 136-142, 2009.

CAVALIERI, S. D. et al. Tolerance of corn hybrids to nicosulfuron. Planta Daninha, v. 26, n. 1, p. 203-214, 2008.

CHOE, E.; WILLIAMS, M. M. Expression and comparison of sweet corn CYP81A9s in relation to nicosulfuron sensitivity. Pest Management Science, v. 76, n. 9, p. 3012-3019, 2020.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011.

GANIE, Z. A.; JHALA, A. J. Interaction of 2,4-D or dicamba with glufosinate for control of glyphosate-resistant giant ragweed (Ambrosia trifida L.) in glufosinate-resistant maize (Zea mays L.). Frontiers in Plant Science, v. 8, p. 1207, 2017.

GEMELLI, A. et al. Estratégias para o controle de capim-amargoso (Digitaria insularis) resistente ao glyphosate na cultura milho safrinha. Revista Brasileira de Herbicidas, v. 12, n. 2, p. 162.170, 2013.

GHARDE, Y. et al. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Protection, v. 107, p. 12-18, 2018.

GIOVANELLI, B. F. et al. Selectivity of herbicides applied separately or in combination in the post emergence of RR2 maize. Brazilian Journal of Agriculture, v. 93, n. 1, p. 47-57, 2018.

GIRALDELI, A. L. et al. Efficacy and selectivity of alternative herbicides to glyphosate on maize. Revista Ceres, v. 66, n. 4, p. 279-286, 2019.

GIRALDELI, A. L. et al. Viability of Cyperus rotundus L. tubers after application of herbicide in pre-and postemergence. Arquivos do Instituto Biológico, v. 87, e0532019, 2020.

GREEN, J. M. Evolution of glyphosate-resistant crop technology. Weed Science, v. 57, n. 1, p. 108-117, 2009.

JAGŁA, M. et al. Sensitivity assessment of varieties, effectiveness of weed control by selected herbicides, and infection of the fusarium in maize (Zea mays L.) cultivation. Agronomy, v. 10, n. 8, p. 1115, 2020.

KARKANIS, A. et al. Johnsongrass (Sorghum halepense (L.) Pers.) interference, control and recovery under different management practices and its effects on the grain yield and quality of maize crop. Agronomy, v. 10, n. 2, 266, 2020.

KRENCHINSKI, F. H. et al. Ammonium glufosinate associated with post-emergence herbicides in corn with the cp4-epsps and pat genes. Planta Daninha, v. 37, e019184453, 2019.

KRENCHINSKI, F. H. et al. Glufosinate resistance level is proportional to phosphinothricin acetyltransferase gene expression in glufosinate-resistant maize. Journal of Agricultural and Food Chemistry, v. 66, n. 48, p. 12641-12650, 2018.

KRENCHINSKI, F. H. et al. Post-emergence application of glufosinate on maize hybrids containing the phosphinothricin acetyltransferase gene (pat). Australian Journal of Crop Science, v. 14, n. 7, p. 1095-1101, 2020.

LINDSEY, L. E. et al. Evaluation of application program and timing in herbicide-resistant corn. Weed Technology, v. 26, n. 4, p. 617-621, 2012.

LIU, X. et al. RNA-seq transcriptome analysis of maize inbred carrying nicosulfuron-tolerant and nicosulfuron-susceptible alleles. International Journal of Molecular Sciences, v. 16, n. 3, p. 5975-5989, 2015.

MACIEL, C. D. G. et al. Seletividade de misturas de herbicidas e inseticidas em tanque aplicadas em híbridos de milho. Revista Brasileira de Milho e Sorgo, v. 17, n. 2, p. 287-302, 2018.

MESAROVIĆ, J. et al. Evaluation of the nutritional profile of sweet maize after herbicide and foliar fertilizer application. Journal of Cereal Science, v. 87, p. 132-137, 2019.

MEYER, M. D.; PATAKY, J. K.; WILLIAMS, M. M. Genetic factors influencing adverse effects of mesotrione and nicosulfuron on sweet corn yield. Agronomy Journal, v. 102, n. 4, p. 1138-1144, 2010.

MÜLLNER, H.; ECKES, P.; DONN, G. Engineering crop resistance to the naturally occurring glutamine synthetase inhibitor phosphinothricin. In: DUKE, S. O.; MENN, J. J.; PLIMMER, J. R. Pest control with enhanced environmental safety (ACS Symposium Series 524). Washington, DC: American Chemical Society, 1993.

NANDULA, V. K. Herbicide resistance traits in maize and soybean: current status and future outlook. Plants, v. 8, n. 9, 337, 2019.

RICHBURG, J. T. et al. Tolerance of corn to PRE-and POST-applied photosystem II–inhibiting herbicides. Weed Technology, v. 34, n. 2, p. 277-283, 2020.

SILVA, A. F. M., et al. Seletividade de herbicidas isolados e em associações para milho RR2/LL®. Revista Brasileira de Herbicidas, v. 16, n. 1, p. 60-66, 2017.

SOLTANI, N.; SHROPSHIRE, C.; SIKKEMA, P. H. Yellow nutsedge (Cyperus esculentus L.) control in corn with various rates of halosulfuron. Canadian Journal of Plant Science, v. 98, n. 3, p. 628-632, 2018.

VELINI, E. D.; OSIPE, R.; GAZZIERO, D. L. P. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD, 1995.

WANG, J. et al. Effects of nicosulfuron on growth, oxidative damage, and the ascorbate-glutathione pathway in paired nearly isogenic lines of waxy maize (Zea mays L.). Pesticide Biochemistry and Physiology, v. 145, p. 108-117, 2018.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.