Detection of nematodes in soybean crop by drone

Bruno Henrique Tondato Arantes, Victor Hugo Moraes, Alaerson Maia Geraldine, Tavvs Micael Alves, Alice Maria Albert, Gabriel Jesus da Silva, Gustavo Castoldi

Resumo


Global consumption of oilseeds has been growing progressively in the last five growing seasons, in which soybean represents 60% of this sector. Thus, in order to maintain a high production in the region of Rio Verde, State of Goiás, against the phytopathological problems, this study aimed to define the best spectral range for the detection of H. glycines and P. brachyurus by linear regressions in soybean at R3 stage, as well as the elaboration of mathematical models through multiple linear regressions. For this, soil and root were sampled in the experimental area, as well as a flight was performed with the Sentera sensor. Data were used for the elaboration of regressions and for the validation of 2 mathematical models. Significant values were observed in simple linear regression only for cysts, in the visible range, with a good R² value for the Green, Red and 568 nm bands, to nonviable cysts. When working with the stepwise statistics, better results are found for H. glycines, which now has an R²(aj) of 0.7430 and P. brachyurus is then detected. From the mathematical model obtained with the multiple linear regression for non-viable cysts with an R²(aj) of 0.7430, it is possible to detect the spatial distribution of nematodes across the soybean field, in order to perform a localized management, optimizing the applications. Good results are also possible using the mathematical model obtained by simple linear regression.

Palavras-chave


Remote sensing. Image processing. Heterodera glycines. Pratylenchus brachyurus. Digital Farming.

Texto completo:

PDF (English)

Referências


ALFENAS, A. C; R. G. MAFIA. Métodos em Fitopatologia. 2 ed. Viçosa: Universidade Federal de Viçosa, 2007. 516p.

ALJAAFRI, W. A. R. Management of plant-parasitic nematodes using gene manipulation and biological nematicides. 1 ed. Mississippi: Mississippi State University, 2017. 176p.

ANTÔNIO, H. Fitonematóides na cultura da soja. Informe Agropecuário, v. 16, n. 172, p. 60-65, 1992.

ARAÚJO, F. G. D. Quantificação de machos e fêmeas de Heterodera glycines (Ichinohe, 1952) em cultivares de soja resistentes e suscetíveis. 2009. 38p. Dissertação (Mestrado). Universidade Federal de Goiás.

BACKOULOU, G. F et al. Processed multispectral imagery differentiates wheat crop stress caused by greenbug from other causes. Computers and Electronics in Agriculture, v. 115, p. 34-39, 2015. doi: 10.1016/j.compag.2015.05.008.

BAJWA, S. G. et al. Soybean disease monitoring with leaf reflectance. Remote Sensing, v. 9, n. 2, p. 127, 2017. doi: 10.3390/rs9020127.

CHATTERJEE, S; A. S. HADI. Regression analysis by example. 2 ed. New York: Wiley, 2015. 389p.

COOLEN, W.A; D’HERDE, C.J. A method for the quantitative extraction of nematodes from plant tissue. Ghent: State Nematology and Entomology Research Station, 1972. 77p.

DUTTA, T. K. et al. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, v. 17, p. 17-32, 2019. doi: 10.1016/j.cpb.2019.02.001.

SANTANA-GOMES, S. D. M et al. Sucessão de culturas no manejo de Pratylenchus brachyurus em soja. Nematropica, v. 44, n. 2, p. 200-206, 2014.

HOMIAK, J. A et al. Seed treatments associated with resistance inducers for management of Pratylenchus brachyurus in soybean. Phytoparasitica, v. 45, n. 2, p. 243-250, 2017. doi: 10.1007/s12600-017-0575-0.

JENKINS, W. R. B. et al. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant disease reporter, v. 48, n. 9, 1964.

JEONG, S et al. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. International Journal of Remote Sensing, v. 39, n. 8, p. 2441-2462, 2018. doi: 10.1080/01431161.2018.1425567.

JOALLAND, S et al. Comparison of visible imaging, thermography and spectrometry methods to evaluate the effect of Heterodera schachtii inoculation on sugar beets. Plant methods, v. 13, n. 1, p. 73, 2017. doi: 10.1186/s13007-017-0223-1.

JUNIOR, R. F. S. et al. A. Detection of infested areas with Heterodera glycines in a soybean field using spectroradiometry in the visible and near infrared. Fitopatologia Brasileira, v. 27, n. 4, p. 355-360, 2002.

LÓPEZ, J. A. et al. A multifunctional wireless device for enhancing crop management. Agricultural Water Management, v. 151, p. 75-86, 2015. doi: 10.1016/j.agwat.2014.10.023.

LÓPEZ-RIQUELME, J. et al. A software architecture based on FIWARE cloud for Precision Agriculture. Agricultural water management, v. 183, p. 123-135, 2017. doi: 10.1016/j.agwat.2016.10.020.

MALLOWS, C. L. Some comments on Cp. Technometrics, v. 42, n. 1, p. 87-94, 2000. doi: 10.1080/00401706.2000.10485984.

MARTINELLI, F. et al. Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, v. 35, n. 1, p. 1-25, 2015. doi: 10.1007/s13593-014-0246-1.

MARTINS, G. D. et al. Detecting and mapping root-knot nematode infection in coffee crop using remote sensing measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 10, n. 12, p. 5395-5403, 2017. doi: 10.1109/JSTARS.2017.2737618.

MASONBRINK, R et al. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC genomics, v. 20, n. 1, p. 1-14, 2019. Doi: 10.1186/s12864-019-5485-8.

NIBLACK, T. L. Soybean cyst nematode management reconsidered. Plant disease, v. 89, n. 10, p. 1020-1026, 2005. doi: 10.1094/PD-89-1020.

SCHUT, A. G. et al. Assessing yield and fertilizer response in heterogeneous smallholder fields with UAVs and satellites. Field Crops Research, v. 221, p. 98-107, 2018. doi: 10.1016/j.fcr.2018.02.018.

SONG, J. et al. Assessment of parasitic fungi for reducing soybean cyst nematode with suppressive soil in soybean fields of northeast China. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, v. 67, n. 8, p. 730-736, 2017. doi: 10.1080/09064710.2017.1343377.

TAMURA, R. et al. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor. Journal of Global Optimization, v. 73, n. 2, p. 431-446, 2019. doi: 10.1007/s10898-018-0713-3.

TIHOHOD, D. 2000. Nematologia agrícola aplicada. 2 ed. Jaboticabal: Funep, 2000, 372p.

USDA – United States Departmentof Agriculture. Oilseeds: world markets and trade. Available at: . Accessed 12 April 2019.

YANG, C. et al. Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery. Computers and Electronics in Agriculture, v. 123, p. 154-162, 2016. doi: 10.1016/j.compag.2016.02.026.

Hsieh, Y. T. et al. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, v. 41, 2016.

Zhang, H. et al. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Molecular Genetics and Genomics, v. 292, n. 6, p. 1257-1265, 2017. doi: 10.1007/s00438-017-1345-x.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.