Role of Research and Development Institutions and AgTechs in the digital transformation of Agriculture in Brazil

Luciana Alvim Santos Romani, Joice Machado Bariani, Debora Pignatari Drucker, Glauber José Vaz, Vitor Henrique Vaz Mondo, Maria Fernanda Moura, Edson Luis Bolfe, Pedro Henrique Pimentel de Sousa, Stanley Robson de Medeiros Oliveira, Ariovaldo Luchiari Junior


The Brazilian agribusiness sector has been witnessing increasing modernization, caused by the extensive adoption of technologies, with increase in productivity and reduction of risks In addition, the use of digital technologies in farms has recently been increasing, engendering the emerging field of digital agriculture. In this context, this article presents a startup acceleration program, called TechStart Agro Digital, an initiative of Embrapa Agricultural Informatics and Venture Hub with the support of various stakeholders in the agricultural innovation ecosystem. Further, this article presents a methodology for technological and business acceleration focused on agribusinesses, which was proposed by the two institutions, and its application in the first cycle of the program in 2019. The results show that the 11 startups that graduated from the program demonstrated an improvement and growth six months after the acceleration program, and validate the potential of the program in facilitating the development of technologies that are more consolidated and focused on the real problems of agriculture. The post-program follow-up indicates that these agricultural technology startups and organizations (AgTechs) have helped rural producers effectively and efficiently, thereby adding value to Brazilian agriculture.


Digital agriculture; Agricultural innovation ecosystems; Open innovation; AgTechs; Startups

Texto completo:



ABRAHAM, E. R.; REIS, J. et al. Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production. Agriculture, v. 10, p. 475, 2020.

BASOLE, R. C. Accelerating Digital Transformation: Visual Insights from the API Ecosystem. IT Professional, v. 18, n. 6, p. 20-25, 2016.

BOLFE, E. L. et al. Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers. Agriculture, 2020, v. 10, n. 12. 653. 2020.

BRASIL. Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC). Estratégia Brasileira de Transformação Digital: E-digital. 2018. Available at: Accessed in: November 18th, 2020.

CHEN, Y.; LI, Y.; LI, C. Electronic agriculture, blockchain and digital agricultural democratization: Origin, theory and application. Journal of Cleaner Production, v. 268, p. 122071. 2020.

CHESBROUGH, H.; VANHAVERBEKE, W.; WEST, J. (Ed.). Open innovation: Researching a new paradigm. Oxford University Press on Demand, 2006.

DELL. Quantum Computing. 2020. Disponível em: Acesso em: 25 nov. 2020.

GOMES, L. A. V. et al. Unpacking the innovation ecosystem construct: evolution, gaps and trends. Technological Forecasting & Social Change, v. 136, p. 30-48, 2018.

IBM. Quantum Experience. 2020. Available in: Accessed in: November 25th, 2020.

KAMILARIS, A.; PRENAFETA-BOLDÚ, F.X. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, v. 147, p.70-90. 2018.

KAYAD, A. et al. Latest Advances in Sensor Applications in Agriculture. Agriculture, v. 10, p. 362. 2020.

LIAKOS, K.G. et al. Review machine learning in agriculture: a Review. Sensors, v. 18, p. 2674. 2018,

MALECKI, E. J. Entrepreneurship and entrepreneurial ecosystems. Geography Compass, v. 12, n. 3, p. e12359, 2018.

MASSRUHÁ, S. M. F. S. et al. A transformação digital no campo rumo à agricultura sustentável e inteligente. In: MASSRUHÁ, S. M. F. S.; LEITE, M. A. de A.; OLIVEIRA, S. R. de M.; MEIRA, C. A. A.; LUCHIARI JUNIOR, A.; BOLFE, E. L. (Ed.). Agricultura digital: pesquisa, desenvolvimento e inovação nas cadeias produtivas. Brasília, DF: Embrapa, 2020. cap. 1, p. 20-45.

MICHELS, M.; BONKE, V.; MUSSHOF, O. Understanding the adoption of smartphone apps in crop protection. Precision Agriculture, v. 21, 1209-1226. 2020.

MICROSOFT. Quantum. 2020. Available at: Assessed in: 25 nov. 2020.

MOORE, J. F. Predators and prey: a new ecology of competition. Harvard business review, v. 71, n. 3, p. 75-86, 1993.

PIGFORD, A. E.; HICKEY, G. M.; KLERKX, L. Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agricultural Systems, v. 164, p. 116-121, 2018.

TANSLEY, A. The Use and Abuse of Vegetational Concepts and Terms. Ecology, v. 16, n.3, p.284-307, 1935. https://doi:10.2307/1930070.

TRENDOV, N. M.; VARAS, S.; ZENG, M. Digital Technologies In Agriculture And Rural Areas - Status Report. 1. ed. Food and Agriculture Organization of the United Nations: Rome, 2019. 152 p. Available at:

UNGC. United Nations Global Compact. Digital Agriculture. 2017.

VAZ, G. J. et al. AgroAPI: criação de valor para a agricultura digital por meio de APIs. In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 11., 2017, Campinas. Ciência de dados na era da agricultura digital: anais. Campinas: Ed. Unicamp: Embrapa Informática Agropecuária, 2017. p. 59-68. SBIAgro 2017.

VERDOUW, C. et al. Architecture framework of IoT-based food and farm systems: A multiple case study. Computers and Electronics in Agriculture, v. 165, p. 104939. 2019.

WOLFERT, S. et al. Big Data in Smart Farming - A review. Agricultural Systems, v. 153, p. 69-80. 2017.

ZERVOPOULOS, A. et al. Wireless Sensor Network Synchronization for Precision Agriculture Applications. Agriculture, v. 10, p. 89. 2020.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.