Survey on connectivity and cloud computing technologies: State-of-the-art applied to Agriculture 4.0

Rafael Simionato, José Rodrigues Torres Neto, Carla Julciane dos Santos, Bruno Silva Ribeiro, Fernando Cesar Britto de Araújo, Antonio Robson de Paula, Pedro Augusto de Lima Oliveira, Paulo Silas Fernandes, Jin Hong Yi

Resumo


In recent years, agriculture has faced many challenges, from a growing global population to be fed, the work power evasion in the sector, to sustainability requirements and environmental constraints. To satisfy the increasingly demanding stakeholders, the agricultural sector has looked for new ways to tackle these issues. In this context, Information and Communications Technologies (ICTs) have been applied to help the agricultural sector overcome these challenges. This article investigates how two ICTs - connectivity and cloud computing - can leverage and traverse other ICTs, such as Internet of Things and artificial intelligence, enabling the entire productive sector to be supported by decision-making systems, which in turn are based on data-driven models. Moreover, a successful case study on how cloud computing has helped one of SiDi’s biggest customers - a global company - improve its operational performance by obtaining insights from its data is presented.

Palavras-chave


Telecommunication; Serverless; Data lake; Data analysis; Internet of Things

Texto completo:

PDF

Referências


rd GENERATION PARTNERSHIP PROJECT-3GPP. Release 13, [S.I.], 2016. Available:

rd GENERATION PARTNERSHIP PROJECT-3GPP. Release 14, [S.I.], 2017. Available:

G ALLIANCE FOR CENNECTED INDUSTRIES AND AUTOMATION-5G ACIA. 5G Non-Public Networks for Industrial Scenarios, [S.I.]. 2019. Available:

AL-DHURAIBI, Yahya et al. “Elasticity in Cloud Computing: State of the Art and Research Challenges,” in IEEE Transactions on Services Computing, v. 11, n. 2, pp. 430-447, 1 March-April 2018, doi: 10.1109/TSC.2017.2711009.

ANALYSIS MASON. Webinar Private LTE/5G networks: opportunities for operators, [S.I.]. 2020. Available:

ARJONA, R et al. An Experimental End-to-End Delay Study of a Sub-1GHz Wireless Sensor Network with LTE Backhaul. In: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018. p. 1-7.

AWS-IC. Amazon Web Services, “AWS IoT Developer Guide,” 2020. Available: . Accessed October 2020.

AWS-GG. Amazon Web Services, “AWS Greengrass Developer Guide,” 2020. Available: . Accessed October 2020.

BERNARDOCKI, P et al. E-Book Cobrindo o campo com IoT Celular, São Paulo-SP, Ericsson. 2020. Available:

CARAM, V. Live Painel Telebrasil 2020 Workshop 1: Futuras Demandas por Espectro, 08/09/20, ANATEL presentation. Available:

CAREY, S. “What is CaaS? Simpler container management.” Available:

COCAMAR. Cocamar participa de maratona digital. 2020. Available: Accessed at October 29, 2020.

DAVENPORT, T. H.; PATIL, D. J. Data scientist: The Sexiest Job of the 21st Century. Harvard Business Review, v. 90, n. 5, p. 70-76, 2012.

EMBRAPA. Embrapa em números. Brasília, DF, 2015. 138p. Available:

EMBRAPA. Visão 2030 - O Futuro da Agricultura Brasileira, Brasília-DF. 2018. Available:

EMBRAPA; SEBRAE; INPE. Pesquisa Agricultura Digital no Brasil, Campinas-SP. 2020. Available:

ESQUERDO, J. C. D. M.; CRUZ, S. A. B.; MACÁRIO, C. G. do N.; ANTUNES, J. F. G.; SILVA, J. dos S. V. da; COUTINHO, A. C. Tecnologias da informação aplicadas aos dados geoespaciais. In: MASSRUHÁ, S. M. F. S.; LEITE, M. A. de A.; LUCHIARI JUNIOR, A.; ROMANI, L. A. S. (Ed.). Tecnologias da informação e comunicação e suas relações com a agricultura. Brasília, DF: Embrapa, 2014. Cap. 8. p. 139-156.

ESTESO, A.; ALEMANY, M M; ORTIZ, A. Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, v. 56, n. 13, p. 4418-4446, 2018.

FANG, H. Managing data lakes in big data era: What’s a data lake and why has it became popular in data management ecosystem. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2015. p. 820-824.

FAO - ORGANIZATION OF THE UNITED NATIONS with inputs from International Food Policy, Research Institute (IFPRI) and Organization of Economic Cooperation and Development (OECD). Food and Agriculture Organization of the United Nations Rome, 2017.

FIELKE, S; TAYLOR, B; JAKKU, E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agricultural Systems, v. 180, p. 102763, 2020.

FITZEK, F HP et al. On the need of computing in future communication networks. In: Computing in Communication Networks. Academic Press. p. 3-45, 2020.

FOOD AND AGRICULTURE ORGANIZATION. How to Feed the World in 2050. In: Executive Summary-Proceedings of the Expert Meeting on How to Feed the World in 2050. Rome, Italy: Food and Agriculture Organization, 2009.

GAGLIORDI, N. How 5G will impact the future of farming and John Deere’s digital transformation. 2018. Available at: . Accessed at 29 October 2020.

GIAMBENE, G; ADDO, E O; KOTA, S. 5G Aerial Component for IoT Support in Remote Rural Areas. In: 2019 IEEE 2nd 5G World Forum (5GWF). IEEE, 2019. p. 572-577.

GOMEZ, C et al. A Sigfox energy consumption model. Sensors, v. 19, n. 3, p. 681, 2019.

HAENLEIN, M; KAPLAN, A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, v. 61, n. 4, p. 5-14, 2019.

IBM. behind the code 2020 [S.I][2020]. Available: < https://maratona.dev/en >. Accessed at 2020, October 27.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA–IBGE. Censo Agropecuário 2017, Rio de Janeiro-RJ. 2017. Available:

KHINE, P P; WANG, Zhao Shun. Data lake: a new ideology in big data era. In: ITM web of conferences. EDP Sciences, 2018. p. 03025.

KLERKX, L; JAKKU, E; LABARTHE, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wageningen Journal of Life Sciences, v. 90, p. 100315, 2019.

LEZOCHE, M et al. Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Computers in Industry, v. 117, p. 103187, 2020.

LIU, Y et al. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 2020.

LORA ALLIANCE. A technical overview of LoRa® and LoRaWAN™. [S.I] [2015]. Available: . Accessed at: 2020, Aug. 28.

MARATONA BEHIND THE CODE. Desafio 01 Cocamar: Maratona Behind the Code, 2020. Available: < https://github.com/maratonadev-br/desafio-1-2020>. Accessed at 27 october 2020.

MARK, T; GRIFFIN, T. Defining the barriers to telematics for precision agriculture: Connectivity supply and demand. 2016.

MASSRUHÁ, S. M. F. S.; LEITE, M. A. de A.; MOURA, M. F. Os novos desafios e oportunidades das tecnologias da informação e da comunicação na agricultura (AgroTIC). In: MASSRUHÁ, S. M. F. S.; LEITE, M. A. de A.; LUCHIARI JUNIOR, A.; ROMANI, L. A. S. (Ed.). Tecnologias da informação e comunicação e suas relações com a agricultura. Brasília, DF: Embrapa, 2014. Cap. 1. p. 23-38.

MEDEIROS, J. Produtor Digital. Live AGROtic 2020, Qual o Perfil do Agricultor Digital, 15/set/2020, CNA/SENAR presentation. Available:

MEKKI, K et al. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT express, v. 5, n. 1, p. 1-7, 2019.

MILOSLAVSKAYA, N; TOLSTOY, A. Big data, fast data and data lake concepts. Procedia Computer Science, v. 88, n. 300-305, p. 63, 2016.

NETO, J. R. et al. INCA: Um sistema healthcare flexível baseado no paradigma fog computing e publish/subscribe. In: Anais do I Workshop de Computação Urbana. SBC, 2017.

O’GRADY, M.D.; LANGTON, D., O´HARE, G.M.P. Edge computing: A tractable model for smart agriculture?, Artificial Intelligence in Agriculture, v. 3, 2019, p. 42-51, ISSN 2589-7217, https://doi.org/10.1016/j.aiia.2019.12.001.

PAVAN, L. V. et al. “A Study of Serverless Architecture: An Overview” (IJRASET) SSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 v. 8 Issue VI June 2020- Available: .

QIAO, YUANSONG & SENHAJI HAFID, ABDELHAKIM & AGOULMINE, NAZIM & KARAMOOZIAN, AMIR & TAMAZIRT, LOTFI & LEE, BRIAN. Edge Computing and Distributed Intelligence. Springer Handbook of Internet of Things, 2020.

RAZA, U; KULKARNI, P. Mahesh Sooriyabandara Low Power Wide Area Networks: An Overview IEEE Communications Surveys & Tutorials. 2017, v. 19, Issue: 2

REDAÇÃO AGRISHOW. Produção agrícola conectada com o universo digital: entenda a tendência da Agricultura 4.0. 2016. Avaliable: .

ROBERTS, Mark, “Serverless Architectures.” Available: . Accessed on October 2020.

ROCHA FILHO, G. P. et al. Enhancing intelligence in traffic management systems to aid in vehicle traffic congestion problems in smart cities. Ad Hoc Networks, v. 107, p. 102265, 2020.

ROCHA FILHO, G. P. et al. Um sistema de controle neuro-fog para infraestruturas residenciais via objetos inteligentes. In: Anais Principais do XXXVI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. SBC, 2018.

SEMTECH CORPORATION. LoRaDevices. Smart Agriculture: Real World Solutions. [S.I] [2019]. Available: . Accessed at: 2020, Aug. 28.

SHAFI, M et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, v. 35, n. 6, p. 1201-1221, 2017.

SUBASHINI, S.; VENKATESWARI, R.; MATHIYALAGAN, P. A study on LoRaWAN for wireless sensor networks. In: Computing, Communication and Signal Processing. Springer, Singapore, 2019. p. 245-252.

TELECO, Cobertura de Redes 4G no Brasil, [S.I.]. 2020. Available:

TELE.SÍNTESE. Relatório Campo Digital, São Paulo-SP. 2020. Available: .

TORRES NETO, J. R. et al. Towards the Use of Unmanned Aerial Vehicles for Automatic Power Meter Readings. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. IEEE, 2015. p. 379-386.

TORRES NETO, J.; GUIDONI, Daniel Ludovico; VILLAS, Leandro. A new solution to perform automatic meter reading using unmanned aerial vehicle. In: 2014 IEEE 13th international symposium on network computing and applications. IEEE, 2014. p. 171-174.

TORRES NETO, J. R. et al. Exploiting offloading in IoT-based microfog: experiments with face recognition and fall detection. Wireless Communications and Mobile Computing, v. 2019, 2019.

TORRES NETO, J. R. et al. Performance evaluation of unmanned aerial vehicles in automatic power meter readings. Ad Hoc Networks, v. 60, p. 11-25, 2017.

TURNER, V; GANTZ, J F.; REINSEL D; MINTON, S. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things. IDC white paper sponsored by EMC Corporation, 2014.

VIOLINO, B. “What is PaaS? Platform as a service explained.” Available:

VÖLK, F et al. Emergency 5G Communication on‐the‐Move: Concept and field trial of a mobile satellite backhaul for public protection and disaster relief. International Journal of Satellite Communications and Networking, 2020.

WOLFERT, S et al. Big data in smart farming–a review. Agricultural Systems, v. 153, p. 69-80, 2017.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.