Precision conservation: from visual analysis of soil aggregates to the use of neural networks

Admilson Írio Ribeiro, Afonso Peche Filho, Claudia Liliana Gutierrez Rosas, Daniel Albiero, Felipe Hashimoto Fengler, Gerson Araújo de Medeiros, Ivando Severino Diniz, Marcela Merides Carvalho, Regina Márcia Longo


The concept of precision conservation can be defined as a set of space technologies and other procedures linked to mappable environmental variables, which can be used to program conservation management practices for natural resources that consider the variability of these variables in space and time within of natural or agricultural systems. In this context, structural loss of soil through human activities is considered, as with a process with a spatial and temporal variation. The management of soil aggregation conditions can contribute to more regenerative and sustainable agricultural processes. It allows spatial analysis technologies through georeferenced visual indicators or even the use of systems with automatic learning, known as deep learning. In this sense, a fair visual method was developed with an analysis of fuzzy logic to classify aggregates in terms of shape, surface roughness, and biogenic structures. Thus, in a second stage, a model of the artificial neural network was developed, capable of detecting and classifying different forms of soil aggregates, thus allowing a brief discussion of the theme and its potential for application in conservation management through the analysis of aggregates via systems automatic sorting. In this way, elements are presented for the motivation of research and development in adaptive technologies in supporting decision-making that can help integrate dynamic and spatial information in the understanding of the soil’s structural condition to preserve the soil more precisely.


Soil aggregate; Fuzzy logic; Artificial neural networks; Morphometry

Texto completo:



AFSHIN, A.; YOUSEF, A. G.; TARAHOM, M,; ALI A. S.; HAMID, A. M. Classification of soil aggregates: A novel approach based on deep learning. Soil and Tillage Research, v. 199, 2020,

ARTOLA, Á. (2019). Clasificación de imágenes usando redes neuronales convolucionales en Python.

BALL, B.C.; GUIMARÃES, R.M.L.; CLOY, J.M.; HARGREAVES, P.R. SHEPHERD, T.G.; MCKENZIE, B.M.; 2017. Visual soil evaluation: a summary of some applications and potential developments for agriculture. Soil and Tillage Research, v. 173, p. 114-124.

BERRY, J.K.; DETGADO, J.A.; KHOSLA, R.; PIERCE, F.J. Precision conservation for environmental sustainability. Journal of Soil and Water Conservation, v. 58, n. 6, 2003, p. 332.

DELGADO, J. A.; BERRY, J. K. Advances in Precision Conservation. Advances in Agronomy, v. 98, n. 8, p. 1-44, 2008.

BOLFE, E. L.; VICENTE, L. E.; ANDRADE, R. G.; VICTORIA, D. C.; BATISTELLA, M. A evolução histórica dos Sistemas de Informações Geográficas/Campinas: Embrapa Monitoramento por Satélite, 2011.17 p.: Data Science Academy. Deep Learning Book, 2019. Disponível em:

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. 2017. Manual de métodos de análise de solo / Paulo César Teixeira ... [et al.], editores técnicos. - 3. ed. rev. e ampl. – Brasília, DF : Embrapa, 574 p.

FRANCO, H. H. S.; GUIMARÃES, R. M. L.; TORMENA, C. A.; CHERUBIN, M. R.; FAVILLA, H. S. Global applications of the Visual Evaluation of Soil Structure method: A systematic review and meta-analysis. Soil and Tillage Research, v. 190, p. 61-69, 2019.

JOSÉ, D.; ORTEGA, J. (2019). Prototipo para la clasificación automática de imágenes histológicas para medir el riesgo de carcinoma ductal invasivo usando redes neuronales. Matemáticas.

KAUFMANN, M.; TOBIAS, S., SCHULIN, R. Quality evaluation of restored soils with a fuzzy logic expert system. Geoderma, v.151 (3/4), p. 290-302, 2009.

KRAVCHENKO, A.N.; WANG,W; SMUCKER, J. A.J.M.; RIVERS, M.L. Long-term differences in tillage and land use affect intra-aggregate pore heterogeneity. Soil Science Society of America Journal, v.75, p. 1658-1666, 2011.

MARTÍNEZ, F.S.J.; ORTEGA, F.J.M.; MONREAL, F.J.C.; KRAVCHENKO, A.N.; WANG, W. Soil aggregate geometry: Measurements and morphology. Geoderma, v.237-238, p. 26-48, 2015.

MCKENZIE, D.C. Visual soil examination techniques as part of a soil appraisal framework for farm evaluation in Australia. Soil and Tillage Research, v.127, p. 26-33, 2013.

MELLO, G. F.; MARTINS, A. C. G.; ROVEDA, J. F.; FRANCA, L. V. G.; FENGLER, F. H.; PECHE FILHO, A.; RIBEIRO, A. I. Avaliação dos Índices Físicos e DMG de Agregados dos Solos Degradados a Partir do Uso de Redes Neurais Artificiais. Em: XI Congresso Nacional de Meio Ambiente de Poços De Caldas, 2014, Poços de Caldas - MG., v. 6, p. 1-7, 2014.

PADARIAN, J.; MINASNY, B.; AND MCBRATNEY, A. B. Using deep learning for Digital Soil Mapping, Soil, v.5, p. 79-89, 2019.

PECHE, R.; E. RODRÍGUEZ, E. Development of environmental quality indexes based on fuzzy logic: a case study. Ecological Indicators. v. 23, p.555-565, 2012.

SWETHA, R.K.; BENDE, P.; SINGH, K.; GORTHI, S.; BISWAS, A.; BIN L.; WEINDORF, D. C.; CHAKRABORTY, S. Predicting soil texture from smartphone-captured digital images and an application, Geoderma, v. 376, 2020, 114562.

PEREIRA, S.; PINTO, A.; ALVES, V.; SILVA, C. A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Transactions on Medical Imaging, v.35, n.5, p.1240-1251, 2016.

RALISCH, R.; DEBIASI, H.; FRANCHINI, J. C.; TOMAZI, M.; HERNANI, L. C.; MELO, A. da S.; SANTI, A.; MARTINS, A. L. da S.; BONA, F. D. de., 2017. Diagnóstico rápido da estrutura do solo - DRES. Londrina: Embrapa Soja. Documentos, 390, 63 p.

RIBEIRO, A.I.; LONGO, R.M.; FENGLER, F.H.; MEDEIROS, G.A.; BRESSANE, A.; CROWLEY, D.E.; MELO, W.J. Use of Self-Organizing Maps in the identification of different groups of reclamation sites in the Amazon Forest-Brazil. Int. J. Sustain. Dev. Plann. v. 11, p. 827-833, 2016,

SANTAMARIA, L.; LEMUZ, R. (2018). Reconocimiento de tejido tumoral en imágenes de resonancia magnética por medio de una red neuronal convolucional. Facultad de Ciencias de La Computación, 1-1. https://www

SARMIENTO-RAMOS, J. (2020). Vista de Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica. UIS Ingenierías, 1*9(4), 1-18.

SHAHIN, M.; JAKSA, M.; MAIER, H. Artificial Neural Network Applications in Geotechnical Engineering. Australian Geomechanics. v. 36. p. 49-62, 2001

TABLADA, C. J.; TORRES, G. A. Redes Neuronales Artificiales | Tablada | Revista de educación matemática. Revista de Educación Matemática. v. 24(3), p. 1-9, 2009

TORREGROSA LLORET, A. (2018). Diseño de una segmentación automática de gliomas en imágenes de resonancia magnética multimodal con redes neurales convolucionales profundas.

VAN LEEUWEN, M. M. W. J.; HEUVELINK, G. B. M.; WALLINGA, J.; BOER, I. J. M.; VAN DAM, J. C.; VAN ESSEN, E. A.; MOOLENAAR, S. W.; VERHOEVEN, F. P.M.; STOORVOGEL, J. J.; STOOFA, C. R. Visual soil evaluation: reproducibility and correlation with standard measurements. Soil and Tillage Research, v.178, p.167-178, 2018.

ZHU, Y.; NEWSAM, S. Land use classification using convolutional neural networks applied to ground-level images. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ‘15). Association for Computing Machinery, New York, NY, USA, v. 61, p. 1-4, 2015. DOI:

WHALLEY,W.R.; RISELEY, B. ; LEED-HARISON, P.B.; BIRD, N.R.A.; LEECH, P.K.; ADDERLEY,W.P. Structural differences between bulk and rhizosphere soil. Europe Journal Soil Science, v. 56, p. 353-360, 2005.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.