Geostatistics and its potential in Agriculture 4.0

Marcos Sales Rodrigues, Annamaria Castrignanò, Antonella Belmonte, Kátia Araújo da Silva, Bruno França da Trindade Lessa


In order to meet future food demands and ensure sustainability new technologies have been incorporated into agriculture. Some researchers believe that we are living in the fourth agricultural revolution or Agriculture 4.0. Among the many technologies involved in the Agriculture 4.0, it is necessary to highlight the importance of geostatistics in the implementation of those technologies. Geostatistics is a class of statistics used to analyze and predict the values associated with spatial or spatiotemporal phenomena, and it is very important to understand the spatial distribution of agricultural variables. Therefore, the objective of this review is to show the potential of geostatistics in Agriculture 4.0. The article presents an exhaustive literature review of geostatistics and its potential in agriculture, by showing a brief of geostatistical approaches, some practical use of geostatistics in agriculture, and a description of multivariate geostatistics for multi-source data fusion using some case studies. This review showed that geostatistics has been used for agricultural purposes and has been producing exciting results. In addition, more advanced analysis such as multivariate geostatistics in fuse heterogeneous data can be easily adapted to any experimental conditions and type of sensor data and/or sampling data to increase estimation accuracy.


Data fusion; Kriging; Multivariate geostatistics; Semivariogram

Texto completo:



AGGELOPOOULOU, K. et al. Delineation of management zones in an apple orchard in Greece using a multivariate approach. Computers and Electronics in Agriculture, v. 90, p. 119-130, 2013.

ANASTASIOU, E. et al. A multi-source data fusion approach to assess spatial-temporal variability and delineate homogeneous zones: A use case in a table grape vineyard in Greece. Science of the Total Environment, v. 684, p. 155-163, 2019.

ARMANTO, M. E. Soil variability and sugarcane (Saccharum officinarum L.) biomass along ultisol toposequences. Journal of Ecological Engineering, v. 20, n. 7, p. 196-204, 2019.

ARMSTRONG, M. Basic Linear Geostatistics. Berlin: Springer-Verlag, 1998, 153 p.

AVILA, I. A. M. et al. Soil attributes and weed seedbank spatial correlation. Bioscience Journal, v. 35, n. 6, p. 1871-1877, 2019.

BELLEHUMEUR, C.; LEGENDRE, P.; MARCOTTE, D. Variance and spatial scales in a tropical rain forest: changing the size of sampling units. Plant Ecology, v. 130, p. 89-98, 1997.

BOTTEGA, E. L. et al. Spatial and temporal distribution of weeds in no-tillage system. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, n. 12, p. 1107-1111, 2016.

BUDAK, M. Importance of spatial soil variability for land use planning of a farmland in a semi-arid region. Fresenius Enviromental Bulletin, v. 27, n. 7, p. 5053-5065, 2018.

BUTTAFUOCO, G. et al. Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field. Precision Agriculture, v. 18, p. 37-58, 2017.

BUTTAFUOCO, G. et al. An approach to delineate management zones in a durum wheat field: validation using remote sensing and yield mapping. Precision Agriculture ‘15, p. 241-248, 2015.

BUTTAFUOCO, G. et al. A geophysical and spectrometric sensor data fusion approach for homogeneous within-field zone delineation. Precision Agriculture ’19, p. 705-712, 2019.

CARVALHO, J. R. P. D.; SILVEIRA, P. M. D.; VIEIRA, S. R. Geoestatística na determinação da variabilidade espacial de características químicas do solo sob diferentes preparos. Pesquisa Agropecuária Brasileira, v. 37, n. 8, p. 1151-1159, 2002.

CASA, R.; CASTRIGNANÒ, A. Analysis of spatial relationships between soil and crop variables in a durum wheat field using a multivariate geostatistical approach. European Journal of Agronomy, v. 28, n. 3, p. 331-342, 2008.

CASTIONI, G. A. F. et al. Variability of physical attributes in tropical weathered soil cultivated with irrigated beans (Phaseolus vulgaris L.). Australian Journal of Crop Science, v. 13, n. 5, p. 656-661, 2019.

CASTRIGNANÒ, A.; BUTTAFUOCO, G. Data Processing. In: CASTRIGNANÒ, A.; BUTTAFUOCO, G.; KHOSLA, R.; MOUAZEN, A. M.; MOSHOU, D.; NAUD, O. Agricultural Internet of Things and Decision Support for Precision Smart Farming. 1 ed. Amsterdã: Academic Press, 2020, p. 140-183.

CASTRIGNANÒ, A. et al. A geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture. Catena, v. 167, p. 293-394, 2018.

CASTRIGNANÒ, A. et al. A combined approach of sensor data fusion and multivariate geostatistics for delineation of homogeneous zones in an agricultural field. Sensors, v. 17, n. 12, p. 2794, 2017.

CASTRIGNANÒ, A. et al. Accounting for extensive topographic and pedologic secondary information to improve soil mapping. Catena, v. 77, n. 1, p. 28-38, 2009.

CASTRIGNANÒ, A. et al. A comparison between mixed support kriging and block cokriging for modelling and combining spatial data with different support. Precision Agriculture, v. 20, p. 193-213, 2019.

CASTRIGNANÒ, A. et al. Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma, v. 175-176, p. 78-89, 2012.

CATANI, R. A. et al. Amostragem de solo para estudos de fertilidade. Bragantia, v. 14, p. 19-26, 1954.

CHAVES, M. E. D. et al. A geostatistical approach for modeling soybean crop area and yield based on census and remote sensing data. Remote Sensing, v. 10, n. 5, p. 680, 2018.

CHIBA, M. K.; GUEDES FILHO, O.; VIEIRA, S. R. Variabilidade espacial e temporal de plantas daninhas em Latossolo Vermelho argiloso sob semeadura direta. Acta Scientiarum. Agronomy, v. 32, n. 4, p. 735-742, 2010.

CHILÈS, J. P.; DELFINER, P. Geostatistics: Modeling Spatial Uncertainty. 2º ed. New York: John Wiley & Sons, 2012, 741 p.

COMAS, C. et al. Analysing spatial correlation of weeds and harvester ants in cereal fields using point processes. Arthropod-Plant Interactions, v. 10, p. 197-205, 2016.

DE BENEDETTO, D. et al. An approach for delineating homogeneous zones by using multi-sensor data. Geoderma, v. 199, p. 117-127, 2013.

DE BENEDETTO, D. et al. Field partition by proximal and remote sensing data fusion. Biosystems Engineering, v. 114, n. 4, p. 372-383, 2013a.

FAO; IFAD; WFP. The State of Food Insecurity in the World. The multiple dimensions of food security. Rome: FAO, 2013, 56 p.

FRIED, G. et al. Relative importance of environmental factors and farming practices in shaping weed communities structure and composition in French vineyards. Agriculture, Ecosystems & Environment, v. 275, p. 1-13, 2019.

GAO, X.-S. et al. Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin, China. Journal of Integrative Agriculture, v. 18, n. 2, p. 279-289, 2019.

GUNDY, G. J.; DILLE, J. A.; ASEBEDO, A. R. Efficacy of variable rate soil-applied herbicides based on soil electrical conductivity and organic matter differences. Advances in Animal Biosciences, v. 8, p. 277-282, 2017.

IZQUIERDO, J. et al. Spatial and temporal stability of weed patches in cereal fields under direct drilling and harrow tillage. Agronomy, v. 10, n. 452, p. 1-20, 2020.

JOURNEL, A. G.; HUIJBREGTS, C. J. Mining Geostatistics. London: Academic Press, 1978, 600 p.

KALIVAS, D. P. et al. Regional Mapping of Perennial Weeds in Cotton with the Use of Geostatistics. Weed Science, v. 60, n. 2, p. 233-243, 2012.

KEMPENAAR, C. et al. Advances in variable rates technology application in potato in the Netherlands. Potato Research, v. 60, p. 295-305, 2017.

KLERKX, L.; ROSE, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security, v. 24, 2020.

KRAHMER, H. et al. Weed surveys and weed mapping in Europe: State of the art and future tasks. Crop Protection, v. 129, p. 1-13, 2020.

LANDRUM, C. et al. An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics. Agricultural Water Management, v. 147, n. 1, p. 144-153, 2015.

LAWRENCE, P. G. et al. Guiding soil sampling strategies using classical and spatial statistics: A review. Agronomy Journal, v. 112, p. 493-510, 2020.

LI, J.; HEAP, A. D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, v. 6, n. 3-4, p. 228-241, 2011.

LI, X-Y. et al. Simplified slope reliability analysis considering spatial soil variability. Engineering Geology, v. 216, p. 90-97, 2017.

LOPES, K. A. L. et al. Fitossociologia do banco de sementes de plantas daninhas em campo agrícola e vegetação de cerrado. Revista Ibero-Americana de Ciências Ambientais, v. 11, n. 4, p. 362-370, 2020.

LÓPEZ-GRANADOS, F. et al. Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds. Precision Agriculture, v. 17, n. 2, p. 183-199, 2016.

MANZIONE, R. L.; CASTRIGNANÒ, A. A geostatistical approach for multi-source data fusion to predict water table depth. Science of The Total Environment, v. 696, 2019.

MARINOUDI, V. et al. Robotics and labour in agriculture. A context consideration. Biosystems Engineering, v. 184, p. 111-121, 2019.

MARTÍN, C. S. et al. Spatial analysis of digital imagery of weeds in a maize crop. International Journal of Geo-Information, v. 7, n. 21, p. 1-20, 2018.

MASARIK, M. P. et al. Enhanced Buried UXO Detection Via GPR/EMI Data Fusion. In: BISHOP, S. S.; ISAACS, J. C. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI, 2016.

MATHERON, G. Principles of geostatictics. Economic Geology, v. 58, p. 1246-1266, 1963.

MEKALA, M. S.; VISWANATHAN, P. “A novel technology for smart agriculture based on IoT with cloud computing,” 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, 2017, p. 75-82.

METCALFE, H. et al. Designing a sampling scheme to reveal correlations between weeds and soil properties at multiple spatial scales. Weed Research, v. 56, n. 1, p. 1-13, 2016.

METWALLY, M. S. et al. Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability, v. 11, n. 24, p. 7084, 2019.

MIRZAEE, S. et al. Spatial variability of soil organic matter using remote sensing data. Catena, v. 145, p. 118-127, 2016.

MONTANARI, R. et al. The use of scaled semivariograms to plan soil sampling in sugarcane fields. Precision Agriculture, v. 13, p. 542-552, 2012.

MURUGAN, D.; GARG, A.; SINGH, D. Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 10, n 12, p. 5322-5328, 2017.

MYERS, D. E. Co-Kriging - New Developments. In: VERLY G. et al. Geostatistics for Natural Resources Characterization. Dordrecht: Springer, 1984, p. 295-296.

NYÉKI, A. et al. Application possibilities and benefits of IOT (internet of things) in agricultural practice. Quo vadis iot? Hungarian Agricultural Engineering, v. 31, n. 37, p. 90-96, 2020.

OJHA, T.; MISRA, S.; RAGHUWANSHI, N. S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, v. 118, p. 66-84, 2015.

OLIVER, M. A. (Ed.). Geostatistical Applications for Precision Agriculture. Dordrecht: Springer, 2010, 348 p.

OLIVER, M. A.; WEBSTER, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, v. 113, n. 0, p. 56-69, 2014.

PATRÍCIO, D. I.; RIEDER, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, v. 153, p. 69-81, 2018.

PÄTZOLD, S. et al. Linking weed patterns with soil properties: a long‑term case study. Precision Agriculture, v. 21, p. 569-588, 2020.

PEREIRA, G. T. et al. Optimization of the sampling scheme for maps of physical and chemical properties estimated by kriging. Revista Brasileira de Ciência do Solo, v. 37, n. 5, p. 1128-1135, 2013.

PITELLI, R. A. O termo planta-daninha. Planta Daninha, v. 33, n. 3, p. 622-623, 2015.

RIVOIRARD, J. Which models for collocated cokriging? Mathematical Geology, v. 33, p. 117-131, 2001.

ROCHA, F. C. et al. Weed mapping using techniques of precision agriculture. Planta Daninha, v. 33, n. 1, p. 157-164, 2015.

ROSE, D. C.; CHILVERS, J. Agriculture 4.0: broadening responsible innovation in an era of smart farming. Frontiers in Sustainable. Food Systems, v. 2, n. 87, 2018.

ROSEMARY, F. et al. Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena, v. 150, p. 53-61, 2017.

SAN MARTÍN, C. et al. Spatial analysis of digital imagery of weeds in a maize crop. International Journal of Geo-Information, v. 7, n. 2, p. 61, 2018.

SCHAFFRATH, V. R. et al. Variabilidade espacial de plantas daninhas em dois sistemas de manejo de solo. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 11, n. 1, p. 53-60, 2007.

SEIDEL, E. J.; OLIVEIRA, M. S. D. A classification for a geostatistical index of spatial dependence. Revista Brasileira de Ciência do Solo, v. 40, p. 1-10, 2016.

SHADDAD, S. M. et al. Site-specific management of salt affected soils: A case study from Egypt. Science of the Total Environment, v. 688, p. 153-161, 2019.

SHADDAD, S. M. et al. Data fusion techniques for delineation of site-specific management zones in a field in UK. Precision Agriculture, v. 17, n. 2, p. 200-217, 2016.

SILVA, F. J. C. et al. Avaliação de índices fitossociológicos de plantas daninhas em solos com três diferentes texturas na cultura da cana-de-açúcar. Revista Fafibe On-Line, v. 10, p. 223-240, 2017.

SILVA, K. A. et al. Soil sampling optimization using spatial analysis in irrigated mango fields under brazilian semi-arid conditions. Revista Brasileira de Fruticultura, v. 42, n. 5, p. e-173, 2020.

SIQUEIRA, G. M. et al. Spatial variability of weeds in an Oxisol under no-tillage system. African Journal of Agricultural Research, v. 11, n. 29, p. 2569-2576, 2016.

USOWICZ, B.; LIPIEC, J. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil and Tillage Research, v. 174, p. 241-250, 2017.

VISCARRA ROSSEL, R. A. et al. Proximal soil sensing: an effective approach for soil measurements in space and time. Advances in Agronomy, v. 113, p. 237-282, 2011.

WACKERNAGEL, H. Multivariate Geostatistics: An Introduction With Applications. 3º ed. Berlin: Springer Nature, 2003, 388 p.

WANG, J.; BROWN, D. G.; HAMMERLING, D. Geostatistical inverse modeling for superresolution mapping of continuous spatial processes. Remote Sensing of Environment, v. 139, p. 205-215, 2013.

WELSCH, J. et al. How many samples? Soil variability affects confidence in the use of common agroecosystem soil indicators. Ecological Indicators, v. 102, p. 401-409, 2019.

YANG, Y.; TONG, X.; ZHANG, Y. Spatial variability of soil properties and portable X-Ray fluorescence-quantified elements of typical golf courses soils. Scientific Reports, v. 10, n. 1, p. 519, 2020.

ZŮVALA, R.; FIŠEROVÁ, E.; MAREK, L. Mathematical aspects of the kriging applied on landslide in Halenkovice (Czech Republic). Open Geosciences, v. 8, n. 1, p. 275-288, 2016.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.