Physiological potential of sorghum seeds under discontinuous hydration and water deficiency conditions

Erivanessa Costa Sousa Sarmento, Fernando Sarmento de Oliveira, Felipe Augusto Sombra Cabral, Daniel Farias Oliveira, Alek Sandro Dutra


Hydration and dehydration cycles during imbibition of seeds may influence their physiological performance, making them more vigorous and resistant to abiotic factors such as water stress. The aim was to investigate whether the times and discontinued hydration cycles condition higher tolerance to water deficiency conditions in germination and seed vigor and accumulation of organic compounds in sorghum seedlings. The experiment was carried out in a randomized experimental design with four replicates of 50 seeds. The treatments were arranged in a 3 × 4 × 6 factorial scheme (hydration times, hydration and dehydration cycles, osmotic potentials). The imbibition curve of the species was determined based on three times (X, Y and Z); and the dehydration curve was constructed. With these times, the seeds were submitted to 0, 1, 2 and 3 cycles of hydration and dehydration (HD). Then, they were submitted to germination test on paper moistened with polyethylene glycol 6000 solution at the osmotic potentials of 0.0 (distilled water), -0.2, -0.4, -0.6, -0.8 and -1.0 MPa. Germination and vigor of sorghum seeds are severely impaired in water potentials equal to or greater than -0.4 MPa. Application of three cycles of hydration and dehydration for a period of 13h in sorghum seeds improves tolerance to water deficiency conditions during germination and seedling development, and provides greater contents of soluble N-amino content and total soluble carbohydrates.


Germination; Sorghum Bicolor; Water Memory; Water Stress; Vigor

Texto completo:



AHANGER, M. A. et al. Environmental stresses and metabolomics: deciphering the role of stress responsive metabolites. In: AHMAD, P. et al. (ed.). Plant metabolites and regulation under environmental stress. New York: Elsevier, 2018. p. 53-67.

AZERÊDO, G. A.; PAULA, R. C.; VALERI, S. V. Germination of Piptadenia moniliformis Benth seeds under water stress. Ciência Florestal, v. 26, n. 1, p. 193-202, 2016.

BEWLEY, J. D. et al. Seeds: physiology of development, germination and dormancy. 3. ed. Nova York: Springer, 2013. 392 p.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regras para análise de sementes. Brasília: MAPA/ACS, 2009. 395 p.

COELHO, D. S. et al. Germination and initial growth of varieties of forage sorghum under saline stress. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 1, p. 25-30, 2014.

DUBOIS, M. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, v. 28, n. 1, p. 350-356, 1956.

DUBROVSKY, J. G. Seed hydration memory in Sonorant Desert cacti and its ecological implication. American Journal of Botany, v. 83, p. 624-632, 1996.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011.

FERREIRA, J. V. A.; MEIADO, M. V.; SIQUEIRA FILHO, J. A. Effect of water, saline and thermal stress on seed germination of Handroanthus spongiosus (Rizzini) S. Grose (Bignoniaceae). Gaia Scientia, v. 11, n. 4, p. 57-64, 2017.

FERREIRA, T.; RASBAND W. ImageJ user guide: IJ1.46r. 2012. Disponível em: Acesso em: 12 jan. 2019.

JADOSKI, S. O.; SUCHORONCZEK, A.; SANTOS, J. Effect of water deficit on vegetative development, production and physiological disorders on Agata potato tubers. Brazilian Journal of Applied Technology for Agricultural Science, v. 10, n. 3, p. 97-107, 2017.

LI, R. et al. Hydropriming accelerates seed germination of Medicago sativa under stressful conditions: a thermal and hydrotime model approach. Legume Research, v. 40, n. 4, p. 741-747, 2017.

LIMA, A. T. et al. Does discontinuous hydration of Senna spectabilis (DC.) H.S. Irwin & Barneby var. excelsa (Schrad.) H. S. Irwin & Barneby (Fabaceae) seeds confer tolerance to water stress during seed germination? Journal of Seed Science, v. 40, n. 1, p. 36-43, 2018a.

LIMA, A. T.; MEIADO, M. V. Discontinuous hydration alters seed germination under stress of two populations of cactus that occur in different ecosystems in Northeast Brazil. Seed Science Research, v. 27, n. 4, p. 292-302, 2017.

LIMA, A. T.; MEIADO, M. V. Effect of hydration and dehydration cycles on Mimosa tenuiflora seeds during germination and initial development. South African Journal of Botany, v. 116, p. 164-167, 2018.

LIMA, A. T.; OLIVEIRA, D. M.; MEIADO, M. V. Effect of hydration and dehydration cycles on Macroptilium atropurpureum seeds germination under water deficit conditions. Comunicações em Plant Sciences, v. 8, p. 55-61, 2018b.

MAGUIRE, J. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, v. 2, n. 1, p. 176-177, 1962.

MARCOS-FILHO, J. Fisiologia de sementes de plantas cultivadas. 2. ed. Londrina: ABRATES, 2015. 660 p.

MATIAS, J. R. et al. Hydropriming as inducer of salinity tolerance in sunflower seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, n. 4, p. 255-260, 2018.

NAKAGAWA, J. Testes de vigor baseados no desempenho das plântulas. In: KRZYZANOWSKI, F. C.; VIEIRA, R. D.; FRANÇA NETO, J. B. (ed.). Vigor de sementes: conceitos e testes. Londrina: ABRATES, 1999. p. 1-24.

OLIVEIRA, A. B.; GOMES-FILHO, E. Germination and vigor of sorghum seeds under water and salt stress. Revista Brasileira de Sementes, v. 31, n. 3, p. 48-56, 2009.

OLIVEIRA, A. B.; GOMES-FILHO, E. Effects of osmoconditioning on the germination and vigor of sorghum seeds with different physiological qualities. Revista Brasileira de Sementes, v. 32, n. 3, p. 25-34, 2010.

PEREIRA, R. G. et al. Performance agronomic sorghum fertilized with nitrogen and phosphorus in Semiarid Rio Grande do Norte. Revista Caatinga, v. 27, n. 2, p. 24-36, 2014.

PRISCO, J. T.; GOMES-FILHO, E. Fisiologia e bioquímica do estresse salino em plantas. In: GREYI, H. R.; DIAS, N. S.; LACERDA, C. F. Manejo da salinidade na agricultura: estudos básicos e aplicados. Fortaleza: Instituto Nacional de Ciência e Tecnologia em Salinidade, 2010. p. 143-159.

SANTOS, A. P.; MEIADO, M. V. Influence of discontinuous hydration on seed germination and initial seedling growth of Amburana cearensis (Allemão) A. C. Sm. (Fabaceae). Gaia Scientia, v. 11, n. 4, p. 19-25, 2017.

SHINOZAKY, K. et al. Responses to abiotic stresses. In: BUCHANAN, B. B.; GRUISSEM, W.; JONES, R. L. (ed.). Biochemistry and molecular biology of plants. 2. ed. Rockville: American Society of Plant Physiologists, 2015, p. 1051-1100.

SILVA, A. G. et al. Sorghum intercropped with interrow brachiaria for off-season production of grain, forage and straw. Revista Ceres, v. 61, n. 5, p. 697-705, 2014.

SOUSA, E. C. et al. Water stress affect germination, seed vigor and seedlings growth of Bidens subalternans. Journal of Agricultural Science, v. 10, n. 9, p. 326-332, 2018.

SUTKA, M. R. et al. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. Journal of Plant Physiology, v. 192, p. 13-20, 2016.

VILLELA, F. A.; DONI-FILHO, L.; SEQUEIRA, E. L. Table of osmotic potential as a function of polyethylene glycol 6000 concentration and temperature. Pesquisa Agropecuária Brasileira, v. 26, n. 11/12, p. 1957-1968, 1991.

WANI, S. P.; ALBRIZIO, R.; VAJJA, N. R. Sorghum. In: STEDUTO, P. et al. (ed.). Crop yield response to water. Roma: FAO. Irrigation and Drainage Paper, 2012. p. 144-151.

YEMM, E. W.; COCKING, E. C. The determination of amino-acids with ninhydrin. Analyst, v. 80, p. 209-213, 1955.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.