Gas exchanges and growth of maize as affected by aeration porosity and soil compaction

Francisca Gleiciane da Silva, Raimundo Nonato Assis Júnior, Rosilene Oliveira Mesquita, Edilaine da Silva Marques, Jaedson Cláudio Anunciato Mota

Resumo


Based on the hypothesis that less than 10% aeration porosity is sufficient to ensure plant development, the objective of this study was to evaluate the effect of levels of aeration porosity and soil density on the gas exchange and growth of maize plants. The experiment was conducted in a greenhouse, in randomized blocks in a 2 × 5 factorial arrangement: two densities (1.6 and 1.7 Mg m-3) and five aeration porosities (0.07, 0.08, 0.09, 0.10 and 0.12 m3 m-3), with five replicates. The interaction between the factors did not have an effect on the analyzed variables. Aeration porosity had a significant effect on photosynthesis, stomatal conductance, relative chlorophyll index (SPAD), plant height and biomass production, whose data were fitted by quadratic models. The highest aeration porosity reduced conductance by 11%, followed by 7% reduction in photosynthesis and 6.4% in SPAD. Aeration porosities lower than 0.10 m3 m-3 did not cause significant reduction in the values of gas exchange and growth of maize. At soil density of 1.7 Mg m-3, photosynthesis, SPAD, chlorophyll b, total chlorophyll and carotenoids were higher, but with no increments in biomass and leaf area. It is concluded that aeration porosities greater than 0.10 m3 m-3 are more limiting to plants due to changes in soil attributes, such as penetration resistance and water content. The highest contents of chlorophyll b and carotenoids at the highest density are acclimatization responses to the stress condition.

Palavras-chave


Soil aeration; Physical quality; Ecophysiology; Zea mays L.

Texto completo:

PDF

Referências


AHUJA, L. R. et al. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society of American Journal, v. 48, n. 4, p. 699-702, 1984.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7182: ensaio de compactação-. Rio de Janeiro: Sistema Nacional de Metrologia, Normalização e Qualidade Industrial, 1986.10 p.

BARBOSA, M. R. et al. Plant generation and enzymatic detoxification of reactive oxygen species. Ciência Rural, v. 44, n. 3, p. 453-46, 2014.

DALASTRA, G. M. et al. Trocas gasosas e produtividade de três cultivares de meloeiro conduzidas com um e dois frutos por planta. Bragantia, v. 73, n. 4, p. 365-371, 2014.

DONAGEMA, G. K. et al. Manual de métodos de análise de solo. 2. ed. rev. ampl. Rio de Janeiro: Embrapa Solos, 2011, 225 p.

FERREIRA, D. F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, v. 38, n. 2, p. 109-112, 2014.

GASPAR, M. Aquaporinas: de canais de água a transportadores multifuncionais em plantas. Revista Brasileira de Botânica, v. 34, n. 4, p. 481-491, 2011.

GRABLE, A. R.; SIEMER, E. G. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potential and elongation of corn roots. Soil Science of America Journal, v. 32, p. 180-186, 1968.

GRZESIAK. S. et al. Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environmental and Experimental Botany, v. 88, p. 2-10, April, 2013.

GRZESIAK, M. T. et al. Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physiol Plant, v. 38, n. 109, p. 1-15, 2016.

GRZESIAK, M. T. et al. Interspecific differences in root architecture among maize and triticale genotypes grown under drought, waterlogging and soil compaction. Acta Physiol Plant, v. 36, p. 3249-3261, 2014.

GRZESIAK, M. T. et al. Physiological markers of stress susceptibility in maize and triticale under different soil compactions and/or soil water contents. Journal of Plant Interactions, v. 12, n. 1, p. 355-372, 2017.

GUIMARÃES, C. V. et al. Desempenho de cultivares e híbridos de milheto em solo submetido a compactação. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 1, p. 1188-1194, 2013.

KLUTE, A. Water retention: laboratory methods. In: KLUTE, A. (ed.) Methods of soil analysis. 2. ed. Madison: American Society of Agronomy: Soil Science Society of America, 1986. p. 635-662.

MENTGES, M. I. et al. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma, v. 263, p. 47-59, 2016.

NAWAZ, M. F.; BOURRIÉ, G.; TROLARD, F. Soil compaction impact and modelling: a review. Agronomy for Sustainable Development, v. 33, n. 2, p. 291-309, 2013.

NEIRA, J. et al. Oxygen diffusion in soils: understanding the factors and processes needed for modeling. Chilean Journal of Agricultural Research, v. 75, p. 35-42, 2015.

NUNES, J. A; SILVA E. M. B; SILVA, T. J. A. Bulk density and water tensions in the soil on corn root production. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, p. 357-363, 2016.

ROMERO, E. M. et al. Condutividade hidráulica, porosidade, resistência mecânica e intervalo hídrico ótimo em Latossolos artificialmente compactados. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 10, p. 1003-1009, 2014.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. Brasília: Embrapa Solos, 2018. 590 p.

SILVA. F. G. et al. Trocas gasosas e fluorescência da clorofila em plantas de berinjela sob lâminas de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 19, n. 10, p. 946-952, 2015.

SILVEIRA, L. R. et al. Sistema de aquisição de dados para equipamento de medida da permeabilidade intrínseca do solo ao ar. Revista Brasileira de Ciência do Solo, v. 35, p. 429-436, 2011.

TAIZ, L. et al. Fisiologia vegetal e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017.

TIAN, L. et al. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agricultural Water Management, v. 218, p. 250-258, 2019.

TORMENA, C. A.; SILVA, A. P.; LIBARDI, P. L. Caracterização do intervalo hídrico ótimo de um Latossolo roxo sob plantio direto. Revista Brasileira de Ciência do Solo, v. 22, p. 573-581, 1998.

TUBEILEH, A. et al. Effect of soil compaction on photosynthesis and carbon partitioning within a maize–soil system. Soil &Tillage Research, v. 71, p. 151-161, 2003.

VAN GENUCHTEN, M. T. A closed-form equation for predicting the conductivity of unsaturated soils. Soil Science Society of America Journal, v. 44, p. 892-897, 1980.

WANG, E. et al. Quantifying soil physical condition based on soil solid, liquid and gaseous phases. Soil & Tillage Research, v. 146, p. 4-9, 2015.

WELLBURN, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, v. 144, p. 307-314, 1994.

ZHANG, J. et al. Photosynthetic performance of soybean plants to water deficit under high and low light intensity. South African Journal of Botany, v. 105, p. 279-287, 2016.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.