Soil characterization by near-infrared spectroscopy and principal component analysis

Maria Ivanilda de Aguiar, Lívia Paulia Dias Ribeiro, Aurea Pinto dos Ramos, Edson Lopes Cardoso

Resumo


This research aimed to use principal component analysis (PCA) as an exploratory method for spectral data of soil absorbance from the Baturité Massif and Central Hinterland (Ceará State, Brazil) to verify the potential of the technique in soil characterization. We analyzed 46 soil samples from different areas (native and cultivated). Each sample was analyzed in two particle sizes: 2 and 0.2 mm. We obtained spectral data by near-infrared spectroscopy (NIR), selecting the 1,360–2,260 nm range (2,376 variables). We evaluated three data pretreatment methods: multiplicative scatter correction (MSC), first derivative, and second derivative of the Savitzky-Golay filter. The absorption bands observed were: 1,414 nm (C–H stretching and deformation combination), 1,450 nm (O–H associated with the carbon chain), 1,780 nm (second overtone of C–H), 1,928 nm (O–H associated with molecular water), and 2,208 nm (C–H stretch and C=O combination). The best pretreatment was verified using only the multiplicative scatter correction (MSC). Two principal components explained 98% of the data variability, being the first principal component (PC1) related to the characteristic band of moisture, with negative values in the 1,928 nm region, while the second principal component (PC2) was related to the total organic matter (OM) originating from the C–H, C=O, and N–H bonds, wavelength region 1,414 nm. The PCA allowed characterizing the samples in terms of moisture and OM contents, with emphasis on soils under irrigated agroforestry system with higher values of moisture and OM, while the soil in degradation process presented lower values for these attributes. The NIR spectroscopy, associated with data processing methods (PCA and MSC), allows identifying changes in soil attributes, such as moisture and OM.

Palavras-chave


Non-destructive analysis; Soil spectral response; Particle size

Texto completo:

PDF

Referências


AGUIAR, M. I. et al. Carbon sequestration and nutrient reserves under different land use systems. Revista Árvore, v. 38, n. 1, p. 81-93, 2014.

ARAÚJO, S. R.; DEMATTÊ, J. A. M.; BELLINASO, H. Analysing the effects of applying agricultural lime to soils by VNIR spectral sensing: a quantitative and quick method. International Journal of Remote Sensing, v. 34, n. 13, p. 4570-4584, 2013.

BARTHÈS, B. G. et al. Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples. Soil Biology and Biochemistry, v. 40, p. 1533-1537, 2008.

BEN DOR, E.; ONG, C.; LAU, I. C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma, v. 245-246, p. 112-124, 2015.

CAMO SOFTWARE AS. The Unscrambler (R) X. Versão 10.4. 2019.

CLARK, R. C. N. et al. High spectral resolution reflectance spectroscopy of minerals. Journal Geophysical Research, v. 95, p. 12653-12680, 1990.

DEMATTÊ, J. A. M. et al. Espectroscopia VIS-NIR-SWIR na avaliação de solos ao longo de uma topossequência em Piracicaba (SP). Revista Ciência Agronômica, v. 46, n. 4, p. 679-688, 2015.

DOTTO, A. C. et al. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra. Geoderma, v. 314, p. 262-274, 2018.

FELIX, J. C. et al. Predição de fósforo, carbono e nitrogênio em solos de basalto, por meio de espectroscopia NIR. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1405-1416, 2016.

FIALHO, J. S. et al. Soil quality, resistance and resilience in traditional agricultural and agroforestry ecosystems in Brazil’s semiarid region. African Journal of Agricultural Research, v. 8, n. 40, p. 5020-5031, 2013.

FRANCESCHINI, M. H. D. et al. Abordagens semiquantitativa e quantitativa na avaliação da textura do solo por espectroscopia de reflectância bidirecional no VIS‑NIR‑SWIR. Pesquisa Agropecuária Brasileira, v. 48, n. 12, p. 1569-1582, 2013.

HONG, Y et al. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma, v. 337, p. 758-769, 2019.

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ. Perfil básico do município Redenção. 2017a. Disponível em: https://www.ipece.ce.gov.br/wp-content/uploads/sites/45/2018/09/Redencao_2017.pdf.

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ. Perfil básico do município Quixadá. 2017b. Disponível em: https://www.ipece.ce.gov.br/wp-content/uploads/sites/45/2018/09/Quixada_2017.pdf.

MANLEY, M. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chemical Society Reviews, v. 43, p. 8200-8214, 2014.

MIYAZAWA, M.; VIEIRA, K. M.; ARAUJO-JUNIOR, C. F. Determinação espectrofotométrica do Cr3+ para estimar carbono orgânico do solo. Brazilian Journal of Animal and Environmental Research, v. 2, n. 4, p. 1455-1463, jul./set. 2019.

RECENA, R.; FERNÁNDEZ-CABANÁS, V. M.; DELGADO, A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability índices. Geoderma, v. 337, p. 368-374, 2019.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. rev. e ampl. Brasília, DF: Embrapa, 2018. 356 p.

SHEPHERD, K. D.; WALSH, M. G. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, v. 66, p. 988-998, 2002.

SORIANO-DISLA, J. M. et al. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applied Spectroscopy Reviews, v. 49, n. 2, p. 139-186, 2014.

TERRA, F. S.; DEMATTÊ, J. A. M.; VISCARRA ROSSEL, R. A. Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing vis-NIR and mid-IR reflectance data. Geoderma, v. 255, n. 256, p. 81-93, 2015.

ULUSOY, Y. et al. Prediction of soil cation exchange capacity using visible and near infrared spectroscopy. Biosystems Engineering, v. 152, p. 79-93, 2016.

VISCARRA ROSSEL, R. A.; CHEN, C. Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils. Remote Sensing of Environment, v. 115, p. 1443-1455, 2011.

WORKMAN JUNIOR, J.; WEYER, L. Practical Guide and spectral Atlas for Interpretive Near- Infrared Spectrospy. Second edition. 2012.

XU, S. et al. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis-NIR spectroscopy. Geoderma, v. 310, p. 29-43, 2018.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.