Statistical model assumptions achieved by linear models: classics and generalized mixed

Rita Carolina de Melo, Nicole Trevisani, Marcio dos Santos, Altamir Frederico Guidolin, Jefferson Luís Meirelles Coimbra

Resumo


When an agricultural experiment is completed and the data about the response variable is available, it is necessary to perform an analysis of variance. However, the hypothesis testing of this analysis shows validity only if the assumptions of the statistical model are ensured. When such assumptions are violated, procedures must be applied to remedy the problem. The present study aimed to compare and investigate how the assumptions of the statistical model can be achieved by classical linear model and generalized linear mixed model, as well as their impact on the hypothesis test of the analysis of variance. The data used in this study was obtained from a genetic breeding program on the cooking time of segregating populations. The following solutions were proposed: i) Classical linear model with data transformation and ii) Generalized linear mixed models. The assumptions of normality and homogeneity were tested by Shapiro-Wilk and Levene, respectively. Both models were able to achieve the assumptions of the statistical model with direct impact on the hypothesis testing. The data transformations were effective in stabilizing the variance. However, several inappropriate transformations can be misapplied and meet the assumptions, which would distort the hypothesis test. The generalized linear mixed models may require more knowledge about the identification of lines of programming, compared to the classical method. However, besides the separation of fixed from random effects, they allow for the specification of the type of distribution of the response variable and the structuring of the residues.

Palavras-chave


Analysis of variance; Homogeneity of variance; Normality of errors; Crop breeding; Generalized linear mixed models

Texto completo:

PDF

Referências


ALMEIDA, C. B. et al. Existe variabilidade para o caráter tempo de cocção em feijão? Depende do erro! Bioscience Journal, v. 27, n. 6, p. 915-923, 2011.

BARTLETT, M. S. The use of transformations. Biometrics, v. 3, n. 1, p. 39-52, 1947.

BOX, G. E. P.; COX, D. R. An analysis of transformations. Journal of the Royal Statistical Society, v. 26, p. 211-252, 1964.

BUSTOS, O. Outliers e robustez. Revista Brasileira de Estatística, v. 49, p. 7-30, 1988.

COCHRAN, W. G. Some consequences when the assumptions for the analysis of variance are not satisfied. Biometrics, v. 3, n. 1, p. 22-38, 1947.

CUSTÓDIO, T. N.; BARBIN, D. Modelos de predição para sobrevivência de plantas de Eucalyptus grandis. Ciência e Agrotecnologia, v. 33, p. 1948-1952, 2009.

DUARTE, J. B.; VENCOVSKY, R. Estimação e predição por modelo linear misto com ênfase na ordenação de médias de tratamentos genéticos. Scientia Agricola, v. 58, n. 1, p. 109-117, 2001.

GHASEMI, A.; ZAHEDIASL, S. Normality tests for statistical analysis: a guide for non-statisticians. International Journal of Endocrinology and Metabolism, v. 10, n. 2, p. 486-489, 2012.

GINKEL, M.; ORTIZ, R. Cross the best with the best, and select the best: HELP in breeding selfing crops. Crop Science, v. 58, n. 1, p. 17-30, 2018.

HOEKSTRA, R.; KIERS, H. A. L.; JOHNSON, A. Are assumptions of well-known statistical techniques checked, and why (not)? Frontiers in Psychology, v. 3, p. 1-9, 2012.

IVES, A. R. For testing the significance of regression coefficients, go ahead and log-transform count data. Methods in Ecology and Evolution, v. 6, n. 7, p. 828-835, 2015.

JUPITER, D. C. Assumptions of statistical tests: what lies beneath. The Journal of Foot & Ankle Surgery, v. 56, p. 910-913, 2017.

LARK, R. M.; CORSTANJE, R. Non-homogeneity of variance components from spatially nested sampling of the soil. European Journal of Soil Science, v. 60, n. 3, p. 443-452, 2009.

LIANG, H. J. et al. Logarithmic transformation is essential for statistical analysis of fungicide EC50 values. Journal of Phytopathology, v. 163, n. 6, p. 456-464, 2015.

LO, S.; ANDREWS, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, v. 6, p. 1171, 2015.

LÚCIO, A. D. et al. Violação dos pressupostos do modelo matemático e transformação de dados. Horticultura Brasileira, v. 30, n. 3, p. 415-423, 2012.

MAIA, E. et al. Aplicação da análise espacial na avaliação de experimentos de seleção de clones de laranjeira Pera. Ciência rural, v. 43, n. 1, p. 8-14, 2013.

MANIKANDAN, S. Data transformation. Journal of Pharmacology & Pharmacotherapeutics, v. 1, n. 2, p. 126-127, 2010.

MELO, R. C. de et al. Heterozygosity level and its relationship with genetic variability mechanisms in beans. Revista Ciência Agronômica, v. 48, n. 3, p. 480-486, 2017.

PIEPHO, H. P. Data transformation in statistical analysis of field trials with changing treatment variance. Agronomy Journal, v. 101, n. 4, p. 865-869, 2009.

PROCTOR, J. R.; WATTS, B. M. Development of a modified Mattson bean cooker procedure based on sensory panel cookability evaluation. Food Research International, v. 20, p. 9-14, 1987.

RIBEIRO-OLIVEIRA, J. P. et al. Data transformation: an underestimated tool by inappropriate use. Acta Scientiarum. Agronomy, v. 40, p. 1-11, 2018.

SILVA, J. G. C. Análise estatística de experimentos. Pelotas: Universidade Federal de Pelotas, 2003.

SOKAL, R. R.; ROHLF, F. J. Biometry: the principles and practice of statistics in biological research. 3. ed. New York: W. H. Freeman, 1995. 880 p.

SPRENT, P.; SMEETON, N. C. Applied non parametric statistical methods. 4. ed. Boca Raton: Chapman; Hall, 2007. 542 p.

STEEL, R. G. D.; TORRIE, J. H.; DICKEY, D. A. Principles and procedures of statistics: a biometrical approach. 3. ed. New York: McGraw-Hill, 1997. 672 p.

WILSON, E. et al. The arcsine transformation: has the time come for retirement? Canada: Memorial University of Newfoundland, Newfoundland and Labrador, 2010. Disponível em: http://www.mun.ca/biology/dschneider/b7932/B7932Final10Dec2010.pdf. Acesso em: 20 dez. 2018.

WOLFINGER, R.; O’CONNELL, M. Generalized linear mixed models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation, v. 4, p. 233-243, 1993.

XU, W.; LI, W.; SONG, D. Testing normality in mixed models using a transformation method. Statistical Papers, v. 54, p. 71-84, 2013.

ZANARDO, B. et al. Posições das mudas de alface nas bandejas de poliestireno e efeitos na normalidade e homogeneidade dos erros na produção de plantas. Revista Ciência Agronômica, v. 41, n. 2, p. 285-293, 2010.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.