Effects of ascorbic acid on the germination and vigour of cowpea seeds under water stress

Luma Rayane de Lima Nunes, Paloma Rayane Pinheiro, João Batista da Silva, Alek Sandro Dutra

Resumo


Water is one of the most compromising factors in the germination and initial growth of seedlings, where its restriction causes a reduction in the water potential of cells in addition to causing oxidative stress. Ascorbic acid (AsA) is known to protect organelles and cells against the accumulation of ROS. The aim of this work was to study the effects of ascorbic acid on the conditioning of cowpea seeds subjected to water stress. The seeds of the BRS Marataoã and Setentão genotypes were conditioned at a concentration of 0.0 (control), 0.25, 0.50, 0.75 and 1.00 mM AsA, and sown on paper rolls (Germitest®) moistened with mannitol solution at a potential of 0.0 (control), -0.3, -0.6, -0.9 and -1.2 MPa, and stored in a germination chamber (BOD) at 25 ºC. The experiment was conducted in a completely randomised design, in a 2×5×5 factorial scheme, with four replications of 50 seeds per treatment. The variables under analysis were percentage germination, first germination count, germination speed index, shoot and root length, total seedling dry weight and electrolyte leakage in the leaves and roots. Conditioning the seeds with ascorbic acid at a concentration of 0.50 mM for the BRS Marataoã genotype and 0.75 mM for the Setentão genotype, enabled the development of more vigorous seedlings and a reduction in the damage caused to the membranes by oxidative stress, both in the absence of a water deficit and at the osmotic potentials under test, including at the lowest potential.

Palavras-chave


Vigna unguiculata L.; Oxidative stress; Drought

Texto completo:

PDF

Referências


ALQURAINY, F. Responses of bean and pea to vitamin C under salinity stress. Research Journal of Agriculture and Biological Sciences, v. 3, n. 6, p. 714-722, 2007.

ARAFA; KHAFAGY, M.; EL-BANNA, M. The effect of glycinebetaine or ascorbic acid on the salt-stress induced damages in sorghum plant cells. International Journal of Botany, v. 3, n. 3, p. 251-259, 2007.

BARBOSA, M. R. et al. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciências Agrárias, v. 44, n. 3, p. 453-460, 2014.

BELTAGI, M. S. Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. African Journal Plant Science, v. 2, n. 10, p. 118-123, 2008.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: Mapa/ACS, 2009. 399 p.

BRILHANTE, J. C. A. et al. Ação do ácido ascórbico exógeno na qualidade fisiológica de sementes de feijão de corda envelhecidas artificialmente. Semina: Ciências Agrárias, v. 34, n. 3, p. 985-994, 2013.

CARVALHO, I. R. et al. Desempenho fisiológico de cultivares de soja com a regulação hídrica por manitol. Revista Agrian, v. 9, n. 31, p. 34-43, 2016.

CARVALHO, N. M.; NAKAGAWA, J. Sementes: ciência, tecnologia a produção. 5. ed. Jaboticabal: Funep, 2012. 590 p.

CUSTÓDIO, C. C.; SALOMÃO, G. R.; MACHADO NETO, N. B. Estresse hídrico na germinação e vigor de sementes de feijão submetidas à diferentes soluções osmóticas. Revista Ciência Agronômica, v. 40, n. 4, p. 617-623, 2009.

DEHGHAN, G.; REZAZADEH, L.; HABIBI, G. Exogenous ascorbate improves antioxidant defense system and induces salinity tolerance in soybean seedlings. Acta Biologica Szegediensis, v. 55, n. 2, p. 261-264, 2011.

DEUNER, C. et al. Viabilidade e atividade antioxidante de sementes de genótipos de feijão-miúdo submetidos ao estresse salino. Revista Brasileira de Sementes, v. 33, n. 4, p. 711-720, 2011.

DOLATABADIAN, A.; MODARRES SANAVY, S. A. M. Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds. Notulae Botanicae Horti Agrobotanici ClujNapoca, v. 36, n. 2, p. 61-66, 2008.

DUARTE, D. M. et al. Simulação de déficit hídrico em diferentes genótipos de feijão pela diminuição do potencial osmótico. Revista Processos Químicos, v. 13, p. 35-41, 2013.

EL-HAK, S. H.; AHMED, A. M.; MOUSTAFA, Y. M. M. Effect of foliar application with two antioxidants and humic acid on growth, yield and yield components of peas (Pisum sativum L.). Journal of Horticultural Science & Ornamental Plants, v. 4, n. 3, p. 318-328, 2012.

FERREIRA, D. F. Análises estatísticas por meio do SISVAR (Sistema para análise de variância) para Windows versão 4.0. In: REUNIÃO ANUAL DA REGIÃO BRASILEIRA DA SOCIEDADE INTERNACIONAL DE BIOMETRIA, 45., 2000, São Carlos, Anais. São Carlos, Universidade Federal de São Carlos, 2000. p.255-258.

FOYER, C.; NOCTOR, G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, v. 17, n. 7, p. 1866-875, 2005.

GILL, S. S.; TUTEJA, N. Reactive Oxygen Species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v. 48, p. 909-930, 2010.

GOMES, G. R.; ALMEIDA, L. H. C.; TAKAHASHI, L. S. A. Efeito do estresse hídrico e salino no vigor e germinação de sementes de feijão-vagem (Phaseolus vulgaris L.). Cultura Agronômica, v. 24, n. 1, p. 83-92, 2015.

ISHIBASHI, Y.; IWAYA-INOUE, M. Ascorbic acid suppresses germination and dynamic states of water in wheat seeds. Plant Production Science. v. 9, n. 2, p. 172-175, 2006.

JALEEL, C. A. et al. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture Biology, v. 11, n. 1, p. 100-105, 2009.

KAPPES, C. et al. Germinação, vigor de sementes e crescimento de plântulas de milho sob condições de déficit hídrico. Scientia agraria, v. 11, n. 2, p.125-134, 2010.

KHAN, T. A.; MAZID, M.; MOHAMMAD, F. A review of ascorbic acid potentialities against oxidative stress induced in plants. Journal of Agrobiology, v. 28, n. 2, p. 97 -111, 2011.

KRANNER, I. et al. Glutathione half-cell reduction potencial: a universal stress marker and modulator of programmed cell death? Free Radical Biology & Medicine, v. 40, n. 12, p. 2155-2165, 2006.

KRANNER, I. et al. What is stress? Concepts, definitions and applications in seed science. New Phytologist, v. 188, p. 655-673, 2010.

LISAR, S. Y. S. et al. Water stress in plants: causes, effects and responses. In: RAHMAN, I. M. M. Water Stress, Rijeka: INTECH, 2012, p. 1-14.

MAGUIRE, J. D. Speed of germinations-aid in selection and evaluation for seeding emergence vigor. Crop Science, v. 2, n. 2, p. 176-7, 1962.

MAIA, J. M. et al. Atividade de enzimas antioxidantes e inibição do crescimento radicular de feijão caupi sob diferentes níveis de salinidade. Acta Botânica Brasílica, v. 26, n. 2, p. 342-349, 2012.

MARCOS FILHO, J. Fisiologia de sementes de plantas cultivadas. 2. Ed., Londrina: Abrates, 2015. 660 p.

MCCUE, P. et al. Model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Processes Biochemistry, v. 35, n. 6, p. 603-613, 2000.

RAZA, S. H. et al. Seed invigoration with water, ascorbic and salicylic acid stimulates development and biochemical characters of okra (Ablemoschus esculentus) under normal and saline conditions. International Journal of Agriculture and Biology, v. 15, p. 486-492, 2013.

SCANDALIOS, J. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, v. 38, n. 7, p. 995 - 1014, 2005.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017.

TAKEMURA, Y. et al. High dose of ascorbic acid induces cell death in mesothelioma cells. Biochemical and Biophysical Research Communications, v. 394, n. 2, p. 249-253, 2010.

TARHANEN, S. et al. Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environmental Pollution, v. 104, p. 121-129, 1999.

VENKATESH, J. et al. Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance. Horticulture, Environment, and Biotechnology, v. 53, n. 4, p. 320-328, 2012.

VIÇOSI, K. A. et al. Estresse hídrico simulado em genótipos de feijão, milho e soja. Revista de Agricultura Neotropical, v. 4, p. 36-42, 2017. Suplemento 1.

ZHANG, C. et al. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Reports, v. 30, n. 3, p. 389-398, 2011.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.