Chemical composition of Panicum maximum ‘BRS Zuri’ subjected to levels of salinity and irrigation depths

Eranildo Brasil da Silva, Maria Socorro de Souza Carneiro, Rafael Nogueira Furtado, Marcos Neves Lopes, Marilena de Melo Braga

Resumo


The study of cultivars with moderate flood tolerance is essential to their use in pastures irrigated with saline water. The aim of this study was to evaluate the chemical composition of Panicum maximum ‘BRS Zuri’ under the effect of different irrigation depths and levels of salinity. A randomised block design of split plots was used with five replications per treatment. The treatments resulted from the combination of three levels of water salinity (S1 = 0.6, S2 = 1.8 and S3 = 3.0 dS m-1) and four levels of irrigation (I1 = 60%, I2 = 80%, I3 = 100% and I4 = 120% of the evapotranspiration). The chemical composition of the grass, Panicum maximum ‘BRS Zuri’, cut at 28 days, was evaluated over two cycles. There was an interaction between the factors (salinity x irrigation depth x cycle) for the dry matter (DM) content. With the increase in irrigation depth, there was a linear reduction in the crude protein (CP) content in both cycles. The neutral detergent fibre (NDF) and cellulose (CEL) content increased linearly as a function of the irrigation depth, while the lignin (LIG) content decreased linearly with irrigation depth. It was concluded that high levels of salinity cause reductions in the dry matter content in response to increased water availability and extension of the cultivar cycles. The reduction in saline levels under low water availability results in a higher CP content. Salinity has a negative effect on the NDF, ADF, HEM, CEL and LIG content as the irrigation depth increases.

Palavras-chave


Saline water; Water stress; Dry matter; Pasture

Texto completo:

PDF

Referências


AL-SOQEER, A.; AL-GHUMAIZ, N. S. Studies on forage yield and feeding value for some grass species under different irrigation treatment in AL-Qassim region.Journal of Agricultural and Veterinary Sciences, v. 5, n. 1, p. 3-16, 2012.

ALVAREZ V., V.H.; RIBEIRO, A.C. Calagem. In: RIBEIRO, A.C.; GUIMARÃES, P.T.G.; ALVAREZ V., V.H.(ed.).Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Viçosa, MG: CFSEMG, 1999. 359p.

CAMPI, P.et al. Energy of biomass sorghum irrigated with reclaimed wastewaters. European Journal of Agronomy, v. 76, p. 176-185, 2016.

CONSOLMAGNO NETO, D.; MONTEIRO, F.; DECHEN, A. Características produtivas do capim-Tanzânia cultivado com combinações de potássio e de magnésio. Acta Scientiarum. Agronomy, v. 29, n. 4, p. 459-467, 2007.

DAUR, I. Feed value of blue panic (panicum antidotale Retz.) Grass at different growth stages and under varying levels of humic acid in saline conditions. Turkish Journal of Field Crops, v. 21, n.2, p. 210-217, 2016.

MAKARANA, G. et al. Growth, yield and grain quality of pearl millet (Pennisetum glaucum L.) genotypes as influenced by salinity of irrigation water in north western regions of India. International Journalof Current Microbiology and Applied Sciences,v. 6, n. 6, p. 2858-2874, 2017.

MANN, D. G. J.et al. Rapid assessment of lignin content and structure in Switchgrass (Panicum virgatumL.) grown under different environmental conditions.BioEnergy Research,v. 2, n. 4, p. 246-256, 2009.

MOCHEL FILHO, W. J. E. et al. Produtividade e composição bromatológica de Panicum maximum cv. Mombaça sob irrigação e adubação azotada.Revista de Ciências Agrárias, v. 39, n. 1, p. 81-88, 2016.

RHOADES, J. D.; KANDIAH, A.; MASHALI, A. M. Uso de águas salinas para produção agrícola. Campina Grande: UFPB,2000.117p. (Estudos da FAO, Irrigação e Drenagem).

RODRIGUES, B. H. N.et al. Determinação do teor de proteína bruta de Panicum maximum cv. Tanzânia, sob diferentes níveis de irrigação e adubação nitrogenada. Pubvet, v. 4, p. 888-892, 2010.

ROJAS-DOWNING, M. M.; HARRIGAN, T.; NEJADHASHEMI, A. P. Resource use and economic impacts in the transition from small confinement to pasture-based dairies.Agricultural Systems,v. 153, p. 157-171, 2017.

SAEG:sistema para análises estatísticas.Versão 9.1.Viçosa, MG: Fundação Arthur Bernardes : UFV, 2007. CD ROM.

SCHOSSLER, T. R.et al. Salinidade: efeitos na fisiologia e na nutrição mineral de plantas.Enciclopédia Biosfera, v. 8, n. 15, p. 1563-1578, 2012.

SILVA, D. J.; QUEIROZ, A. C. Análises de alimentos: métodos químicos e biológicos. Viçosa, MG: Universidade Federal de Viçosa, 2002. 235p.

SILVA, J. L. A. et al. Uso de águas salinas como alternativa na irrigação e produção de forragem no semiárido nordestino. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, p. 66-72, 2014.

SILVEIRA, M. A.; WANDER, A. E. Os mecanismos de coordenação da cadeia produtiva das sementes de gramíneas forrageiras em goiás: um estudo de caso à luz da economia dos custos de transação. Latin American Journal of Business Management, v. 6, n. 2,p. 127-148, 2015.

VALE, M. B.; AZEVEDO, P. V. Avaliação da produtividade e qualidade do capim elefante e do sorgo irrigados com água do lençol freático e do rejeito do dessalinizador. Holos,v. 3, p. 181-195, 2013.

VAN SOEST, P. J. Nutritional ecology of the ruminant. 2. ed. New York: Cornell University Press, 1994. 476 p.

VAN SOEST, P.J.; ROBERTSON, J.B.; LEWIS, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. In: Symposium Carbohydrate Methodology, Metabolism, and Nutritional Implications in Dairy Cattle. Journal of Dairy Science, v.74, n.10, p.3583-3597, 1991.

ZHAO, Y.L. et al. Biomass yield changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Research. v. 111, n. 1,p. 55-64.2009.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.