Analysis of the physical quality of genetically modified and conventional maize grains in the drying and wetting processes

Paulo Carteri Coradi, Alisson Henrique Spricigo de Souza, Lucas Jandrey Camilo, Ângelo Francisco Calegare Lemes, Lélia Vanessa Milane

Resumo


The aim of this work was to evaluate the physical quality of the genetically modified corn grains (Herculex 30S31) as a function of drying and wetting processes in relation to conventional corn (AG 1051). The experimental design was a completely randomized design, with a factorial scheme (7x3x2), seven drying or wetting times (0, 20, 40, 60, 80, 100, 120 minutes), three drying air temperatures (80, 100 and 120 °C) and two types of maize (conventional AG 1051 and Herculex 30S31 transgenic). The grains of transgenic and conventional corn were harvested with a water content of 13.5% (w.b.) and dried in convection oven with forced ventilation, then the same grains were submitted to a wetting process for the same time. The width, thickness, length, contraction and expansion of the grains were determined, the water contents and the electrical conductivity were determined before and after drying, after the wetting process, at each interval of twenty minutes. Drying and wetting processes adversely affected the quality of conventional and transgenic maize grains. However, when compared, transgenic corn kernels were more resistant to physical damage. It was concluded that the changes in water contents in the grains during the drying and storage operations intensify the physical losses, even if at the end the grains remain with water content favorable to storage.


Palavras-chave


Conventional corn AG 1051; Herculex 30S31 transgenic maize; Quantitative and qualitative losses; Resistance of the grains in the post-harvest operations

Texto completo:

PDF

Referências


ANTUNES, L. E. G. et al. Características físico-químicas de grãos de milho atacados por Sitophilus zeamais durante o armazenamento. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, n. 6, p. 615-620, 2011.

BARBOSA NETO, A. M.; MARQUES, L. G.; PRADO, M. M. Mass transfer in infrared drying of gel-coated seeds. Advances in Chemical Engineering and Science, v. 4, n. 1, p. 39-48, 2014.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria n° 611, de 04 de julho de 2012. Alterar os incisos IV e VI do art. 25 e o art. 31, todos da Instrução Normativa n° 60, de 22 de dezembro de 2011. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, n. 129, 5 jul. 2012. Seção 1, p. 10.

CORADI, P. C. et al. Alternatives of storage of corn grains for the conditions of the brazilian cerrado. Bioscience Journal (Online), v. 32, n. 1, p. 29-40, 2016.

CORADI, P. C.; MELO, E. C.; ROCHA, R. P. Evaluation of electrical conductivity as a quality parameter of lemongrass leaves (Cymbopogon Citratus Stapf) submitted to drying process. Drying Technology, v. 32, n. 8, p. 969-980, 2014.

CORADI, P. C.; FERNANDES, C. H. P.; HELMICH, J. C. Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures. Revista Brasileira de Engenharia Agrícola e Ambiental (Online), v. 20, n. 4, p. 385-392, 2016.

CORRÊA, P. C. et al. Moisture sorption isotherms and isosteric heat of sorption of coffee in different processing levels. International Journal of Food Science and Technology, v. 45, n. 10, p. 2016-2022, 2010.

COSTA, L. M. et al. Coeficiente de difusão efetivo para a secagem de sementes de crambe (Crambe abyssinica). Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, n. 10, p. 1089-1096, 2011.

DONDEE, S. et al. Reducing cracking and breakage of soybean grains under combined near-infrared radiation and fluidized-bed drying. Journal Food Engineering, v. 104, n. 1, p. 6-13, 2011.

HASHEMI, G.; MOWLA, D.; KAZEMEINI, M. Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. Journal Food Engineering, v. 92, n. 3, p. 331-338, 2009.

KONING, R. E. Water and water movement. Plant Physiology Information, 1994.

KOWALSKI, S. J.; RAJEWSKA, K. Effectiveness of hybrid drying. Chemical Engineering Process, v. 48, n. 8, p. 1302-1309, 2009.

MOHSENIN, N. N. Physical properties of plant and animal materials. New York: Gordon and Breach, 1986. 841 p.

NUTHONG, P. et al. Kinetics and modelling of whole longan with combined infrared and hot air. Journal Food Engineering, v. 102, p. 233-239, 2011.

OLIVEIRA, D. E. C. et al. Alterações morfométricas em grãos de soja durante o processo de secagem. Semina: Ciências Agrárias, v. 3, n. 1, p. 975-984, 2013.

PEREA-FLORES, M. J. et al. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops Products, v. 38, n. 1, p. 64-71, 2012.

PITELLI, R. A. Genetically modified plants and environmental safety: a critical analysis. Planta Daninha, v. 32, n. 1, p. 235-241, 2014.

POWELL, A. A., MATTHEWS, S. The damaging effect of water of dry pea embryos during imbibition. Journal Experimenal Botany, v. 29, n. 5, p. 1215-29, 1978.

SHIROMA, N. N.; DARI, R.; PENZ JUNIOR, A. M. Milho: um importante ingrediente para a avicultura. Revista Nutrition for Tomorrow, v. 4, p. 50-55, 2011.

SILVA, J. S. Secagem e armazenagem de produtos agrícolas. Viçosa, MG: Aprenda Fácil, 2008. 560 p.

SIQUEIRA, V. C.; RESENDE, O.; CHAVES, T. H. Contração volumétrica dos frutos de pinhão-manso durante a secagem em diversas temperaturas. Revista Brasileira de Armazenamento, v. 36, n. 8, p. 171-178, 2011.

SOUSA, K. L. et al. Cinética de secagem do nabo forrageiro (Raphanus sativus L.). Revista Ciência Agronômica, v. 42, n. 4, p. 883-892, 2011.

TIECKER JUNIOR, A. et al. Avaliação da germinação de grãos de milho em armazenamento hermético e não hermético sob diferentes umidades de colheita. Cadernos de Agroecologia, v. 8, n. 1, 2013.

VERGARA, F. et al. Analysis of the drying processes of osmotically dehydrated apple using the characteristic curve model. Drying Technology, v. 15, n. 3, p. 949-963, 1997.

VERTUCCI, C. W.; LEOPOLD, A. C. Dynamics of imbibition of soybean embryos. Plant Physiology, v. 72, n. 1, p. 190-3, 1983.

VIEIRA, R. D.; KRZYZANOWSKI, F. C. Teste de condutividade elétrica. In: KRZYZANOWSKI, F. C.; VIEIRA, R. D.; FRANÇA NETO, J. B. (ed.). Vigor de sementes: conceitos e testes. Londrina, 1999. cap. 1, p. 1-4.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.