Identification and quantification of antioxidant compounds in cowpea

Regilda Saraiva dos Reis Moreira-Araújo, Geni Rodrigues Sampaio, Rosana Aparecida Manólio Soares, Cintia Pereira Silva, José Alfredo Gomes Arêas


Dietary antioxidant compounds have been widely studied because of their ability to delay or inhibit oxidative damage, which allows them to play an important role in the prevention of diseases and the promotion of health. The identification and characterization of such compounds are required before their use in humans. This study aimed to identify and quantify antioxidant compounds in the cowpea cultivar, BRS Tumucumaque, and the cowpea strain, Pingo de Ouro 1-2, in view of their potential use in the development of new products with potent antioxidant activity. Here, we report the antioxidant activity and the phenolic compound content of the aforementioned cowpeas. The antioxidant extracts were analyzed by HPLC in a Shimadzu LC-20AT chromatograph model equipped with a manual injector using standard solutions of pure phenolic compounds, including gallic acid, quercetin, caffeic acid, chlorogenic acid, ferulic acid, p-coumaric acid, catechin, and epicatechin. Gallic acid was the phenolic compound with the highest level in both BRS Tumucumaque and Pingo de Ouro 1-2 (45.4 ± 2.66 and 93.4 ± 1.25 mg/100 g, respectively). Moreover, we identified and quantified catechin (5.67 ± 0.34 and 6.48 ± 0.51 mg/100 g, respectively), epicatechin (8.67 ± 0.47 and 2.95 ± 0.17 mg/100 g, respectively), ferulic acid (11.1 ± 1.42 and 13.8 ± 0.55 mg/100 g, respectively), and chlorogenic acid (2.39 ± 0.24 and 0.59 ± 0.28 mg/100 g, respectively). In contrast, caffeic acid was only identified in BRS Tumucumaque and quantified at 27.8 ± 2.99 mg/100 g. We conclude that Vigna unguiculata demonstrates functional potential, as both the strain and the cultivar contain antioxidant compounds that help in disease prevention and health maintenance.


Phenolics; Bioactive; Vigna unguiculata

Texto completo:



AKOND, G. M. et al. Minerals (Zn, Fe, Ca and Mg) and antinutrient (phytic acid) constituents in common bean. American Journal of Food Technology, v. 6, n. 3, p. 235-243, 2011.

ANDRADE, D. F.; OGLIARI, P. J. Estatística para as ciências agrárias e biológicas: com noções de experimentação. 2. ed. Florianópolis, SC: UFSC, p. 470, 2010.

ANGELO, P. M.; JORGE, N. Compostos fenólicos em alimentos:uma breve revisão. Revista do Instituto Adolfo Lutz, v. 66, n. 1, p. 1-9, 2007.

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official Methods of Analysis of AOAC International. 18 ed. Gaithersburg: AOAC International, 2005.

BEHLING, E. B. et al. Flavonóide quercetina: aspectos gerais e ações biológicas. Alimentos e Nutrição, v. 15, n. 3, p. 285-292, 2004.

CARVALHO, A. F. U. et al. Nutritional ranking of 30 Brazilian genotypes of cowpeas including of antioxidant capacity and vitamins. Journal of Food Composition and Analysis, v. 26, n. 1/2, p. 81-88, 2012.

CAVALCANTE, R. B. M. et al. Cheese bread enriched with biofortified cowpea flour. Ciência e Agrotecnologia, v. 40, n. 1, p. 97-103, 2016.

DENG, G. et al. Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, v. 5, n. 1, p. 260-266, 2013.

FROTA, K. M. G. et al. Utilisation of cowpea (Vigna unguiculata (L.) Walp) flour in the development of bakery products. Ciência e Tecnologia de Alimentos, v. 30, n. 1, p. 44-50, 2010.

GIUSTI, M. M.; WROLSTAD, R. E. Anthocyanins. Characterization and measurement with UV-visible spectroscopy. In: WROLSTAD, R. E. (Ed.). Current protocols in food analytical chemistry. New York: John Wiley & Sons, p. F1.2.1-1.2.13, 2001.

HALLIWELL, B. Antioxidants in human health and disease. Annual Review of Nutrition, v. 16, p. 33-50, 1996.

HASSIMOTTO, N. M. A.; GENOVESE, M. I.; LAJOLO, F. M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruits pulps. Journal of Agricultural and Food Chemistry, v. 53, n. 8, 2005.

HUBER, K. Evidências da interação entre proteínas e taninos de feijão comum (Phaseolus vulgaris, L.) e seus efeitos na digestibilidade proteica. 109 f. Dissertação (Mestrado em Ciências) - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2012.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Pesquisa de orçamentos familiares: antropometria e estado nutricional de crianças, adolescentes e adultos do Brasil. Rio de Janeiro, 2010.

KALPANADEVI, V.; MOHAN, V. R. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. Unguiculata. Food Science and Technology, v. 51, n. 2, p. 455-461, 2013.

KHANG, D. al. Phenolic profiles and antioxidant activity of germinated legumes. Foods, v. 5, n. 27, p. 1-10, 2016.

KIM, Y. N. et al. Nonsupplemented children of Latino immigrants have low vitamin E intakes and plasma concentrations and normal vitamin C, selenium, and carotenoid intakes and plasma concentrations. Journal American Dietetic Association, v. 106, n. 3, p. 385-391, 2006.

MARATHE, S. A. et al. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food and Chemical Toxicology, v. 49, n. 9, p. 2005-2011, 2011.

NDERITU, A. M. et al. Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion. Food Chemistry, v. 141, p. 1763-1771, 2013.

OBOH, G. Antioxidant properties of some commonly consumed and underutilized tropical legumes. European Food Research Technology, v. 224, n. 1, p. 61-65, 2006.

OLUWATOSIN, O. B. Genetic and environmental variability in starch, fatty acids and mineral nutrients composition in cowpea (Vigna unguiculata L. Walp). Journal of the Science of Food and Agriculture, v. 78, n. 1, p. 1-11, 1998.

PEREIRA, C. A. et al. HPTLC densitometric determination of flavonoids from Passiflora alata, P. edulis, P. incarnata and P. caerulea and comparison with HPLC method. Phytochemical Analysis, v. 15, n. 4, p. 241-8, 2004.

PEREIRA, E. J. et al. Effects of cooking methods on the iron and zinc contents in cowpea (Vigna unguiculata) to combat nutritional deficiencies in Brazil. Food & Nutrition Research, v. 58, p. 20694, 2014.

RE, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, v. 26, n. 9/10, p. 1231-1237, 1999.

ROESLER, R. et al. Atividade antioxidante de frutas do Cerrado. Ciência e Tecnologia de Alimentos, v. 27, n. 1, p. 53-60, 2007.

RUFINO, M. S. M. et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, v. 121, n. 4, p. 996-1002, 2010.

SINGLETON, V. L.; ROSSI JUNIOR, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, v. 16, n. 3, p. 144-158, 1965.

SOARES, M. et al. Avaliação da atividade antioxidante e identificação dos ácidos fenólicos presentes no bagaço de maçã cv. Gala. Ciência e Tecnologia de Alimentos, v. 28, n. 3, p. 727-732, 2008.

TIBERTI, L. A. et al. Identification of flavonols in leaves of Maytenus ilicifolia and M. aquifolium (Celastraceae) by LC/UV/MS analysis. Journal of Chromatography B, v. 846, n. 1, p. 378-384, 2007.

WANG, M. L. et al. Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Genetic Resources: Characterization and Utilization, v. 6, n. 1, p. 62-69, 2008.

XU, B.; CHANG, S. K. C. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chemistry, v. 134, n. 3, p. 1287-1296, 2012.

ZIA-UL-HAQ, M. et al. Antioxidant activity of the extracts of some cowpea (Vigna unguiculata (L) Walp) cultivars commonly consumed in Pakistan. Molecules, v. 18, n. 2, p. 2005-2017, 2013.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.