Spectral indexes for identification of nitrogen deficiency in maize

Liliane Maria Romualdo, Pedro Henrique de Cerqueira Luz, Murilo Mesquita Baesso, Fernanda de Fatima da Silva Devechio, Jessica Angela Bet


Image analysis can provide information extracted from the leaves of crops, and contribute to early identification of nutrient deficiency. The objective of this study was to recognize nutritional nitrogen (N) patterns in maize plants, at the V4 and V7 stages, using digital image analysis based on spectral indexes. The experiment was carried out in a greenhouse under hydroponic cultivation. Treatments consisted of a completely randomized design, in a 4 × 2 factorial arrangement, with four replications. The factors were constituted by the doses of N (0; 3.0; 6.0 e 15 mmol L-1) combined at V4 and V7. In each stage, digital images were taken of leaf blades, with subsequent chemical composition and image analysis. For image recognition and classification, a vector of characteristics based on the spectral indexes was used as follows: excess of green, normalized red, normalized green and red-green ratio, and the combination among them. Additionally, extracted blocks of 9 × 9, 20 × 20 and 40 × 40 pixels on original images were used. The N content in the leaf blade, the dry mass of the plants and the external critical level of N in the nutrient solution were determined for result validation, based on 90% dry matter production. Maximum the global accuracy rate for N patterns was 80 and 93% at V4 and V7, respectively. The use of combined spectral indexes provided better classification performance, and the 9 × 9 pixel image block appeared more adequate for differentiation among the doses of N.



Zea mays L.; Image analysis; Mineral nutrition; Image processing

Texto completo:



ABRAHÃO, S. A. et al. Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices. Revista Ciência Agronômica, v. 44, n. 3, p. 464-4173, 2013.

ALMEIDA, M. L. et al. Crescimento inicial de milho e sua relação com o rendimento de grãos. Ciência Rural, v. 33, n. 2, p. 189-194, 2013.

AMARAL, L. R.; MOLIN, J. P. Sensor óptico no auxílio à recomendação de adubação nitrogenada em cana-de-açúcar. Pesquisa Agropecuária Brasileira, v. 46, n. 12, p. 1633-1642, 2011.

ATZBERGER, C. Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sensing, v. 5, n. 2, p. 949-981, 2013.

BACKES, A. R.; CASANOVA, D.; BRUNO, O. M. Plant leaf identification based on volumetric fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence, v. 23, n. 6, p. 1145-1160, 2009.

BAESSO, M. M. et al. Determinação do “status” nutricional de nitrogênio no feijoeiro utilizando imagens digitais coloridas. Engenharia Agrícola, v.27, n. 2, p. 520-528, 2007.

BATAGLIA, O. C. et al. Métodos de análise química de plantas. Campinas: Instituto Agronômico, 1983. 48p. (Boletim Técnico, 78).

CARMARGO, A.; SMITH, J. S. Image pattern classification for the identification of disease causing agents in plants. Computers and Electronics in Agriculture, v. 66, n. 2, p. 121-125, 2009.

CONGALTON, R. G.; GREEN, K. Assessing the accuracy of remotely sensed data: principles and practices. 2nd ed. Boca Raton, FL: CRC Press, 2009, 183 p.

DELLINGER, A. E.; SCHMIDT, J. S.; BEEGLE, D. B. Developing Nitrogen Fertilizer Recommendations for Corn Using an Active Sensor. Agronomy Journal, v. 100, p. 1546-1552, 2008.

EVERITT, B. S.; DUNN, G. (Ed.). Applied Multivariate Data Analysis. 2nd ed. London: London Arnold, 2001.

FERREIRA, M. M. M. Sintomas de deficiência de macro e micronutrientes de plantas de milho híbrido BRS 1010. Revista Brasileira de Agroambiente, v. 6, p. 74-83, 2012.

FURLANI, P. R. et al. Cultivo hidropônico de plantas. Campinas: Instituto Agronômico, 1999. 52 p.

GONDIM, A. R. O. et al. Eficiência nutricional do milho cv. BRS 1030 submetido à omissão de macronutrientes em solução nutritiva. Revista Ceres, v. 57, n. 4, p. 539-544, 2010.

GONZALEZ, R. C.; WOODS, R. E. Digital image processing. 3rd ed. Reading, Massachusetts: Addison- Wesley, 2008. 943 p.

HOAGLAND, D. R.; ARNON, D. I. The water culture method for growing plants without soil. Berkeley: California Agricultural Experimental Station, 1950. 32 p. (Circular 347).

HOLLAND, K. H.; SCHEPERS, J. S. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal, v. 102, n. 5, p. 1415-1424, 2010.

HOLLAND, K. H.; SCHEPERS, J. S. Use of a virtual-reference concept to interpret active crop canop sensor data. Precision Agriculture, v. 14, n. 1, p. 71-85, 2012.

HUDSON, W. D.; RAMM, C. W. Correct formulation of the kappa coefficient of agreement. Photogrammetric Engineering & Remote Sensing, v. 53, n. 4, p. 421-2, 1987.

PEDROSO, M. et al. A segmentation algorithm for the delineation of agricultural management zones. Computers and Electronics in Agriculture, v. 70, n. 1, p. 199-208, 2010.

ROMUALDO, L. M. et al. Use of artificial vision techniques for diagnostic of nitrogen nutritional status in maize plants. Computers and Eletronics in Agriculture, v. 104, p. 63-70, 2014.

SAS INSTITUTE. Version 9.2. Cary: Statistical Analysis System Institute, 2012. Sena Júnior, D. G. de et al. Discriminação entre estágios nutricionais na cultura do trigo com técnicas de visão artificial e medidor portátil de clorofila. Engenharia Agrícola, v. 28, n. 1, p. 187-195, 2008.

SHIRATSUCHI, L. S. et al. Water and nitrogen effects on active canopy sensor vegetation indices. Agronomy Journal, v. 103, n. 6, p. 1815-1826, 2011.

SILVA JÚNIOR, M. C. et al. Detecção do efeito da adubação nitrogenada em Brachiaria decumbens Stapf. utilizando um sistema de sensoriamento remoto. Revista Brasileira de Zootecnia, v. 37, n. 3, p. 411-419, 2008.

SILVA, F. F. et al. A diagnostic tool for magnesium nutrition in maize based on image analysis of different leaf sections. Crop Science, v. 54, p. 738-745, 2014.

TEIXEIRA, E. F. et al. Análise da uniformidade de sementes de milho via processamento de imagens digitais. Revista da FZVA, v. 14, n. 1, p. 14-24, 2007.

VON PINHO, R. A. V. et al. Marcha de absorção de macronutrientes e acúmulo de matéria seca em milho. Revista Brasileira de Milho e Sorgo, v. 8, p. 157-173, 2009.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.