Culture of Nile tilapia in a biofloc system with different sources of carbon

Eduardo Cesar Rodrigues de Lima, Rafael Liano de Souza, Pamela Jenny Montes Girao, Ítalo Felipe Mascena Braga, Eudes de Souza Correia

Resumo


The aim of this work was to evaluate the effects of using different sources of organic carbon on water quality, growth performance and the acceptability of Nile tilapia (Oreochromis niloticus) fillets grown in a biofloc system. The experiment was carried out over 145 days at the Aquaculture Station of the Federal Rural University of Pernambuco, Brazil. Fish of 72.6 ± 6.83 g were stored (35 fish m-3) in 19 circular tanks (800 L) in a completely randomised experimental design with three treatments, including as a source of carbon, sugar (SUG), liquid molasses (MOL) and molasses powder (MOP), each with five replications, and one control treatment (CTL) without bioflocs, with four replications. Dissolved oxygen concentrations were significantly higher (P≤0.05) in the tanks with no bioflocs due to the absence of bacterial biomass. Total ammoniacal nitrogen (TAN) showed a statistical difference (P≤0.05) between the SUG treatment and the other treatments with bioflocs, having the lowest concentration of 2.53 mg L-1. Survival was greater than 80%, with no statistical difference between treatments (P>0.05); productivity varied from 9.72 (SUG) to 14.22 kg m-3 (CTL) (P≤0.05). Water consumption in the tanks with bioflocs was 11.8 times lower than in the control (CTL). The tilapia fillets from the bioflocs with sugar were preferred by the evaluators, with a score of 7.77 (like moderately to like very much). The carbon sources used (molasses and sugar) can be employed in the culture of O. niloticus tilapia in bioflocs with no damage to the culture water or to productivity.

Palavras-chave


Tilapia culture; Sustainability; Chitralada; Molasses; Fillets

Texto completo:

PDF

Referências


AVNIMELECH, Y. Biofloc technology: a practical guidebook. Baton Rouge:The World Aquaculture Society, 2009. 182 p.

AVNIMELECH, Y. Biofloc technology: - a practical guidebook. 2nd ed. Baton Rouge: The Word Aquaculture Society, 2012. 271 p.

AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, v. 176, n. 3/4, p. 227-235, 1999.

AVNIMELECH, Y. et al. Sustainable land-based aquaculture: rational utilization of water, land and feed resources. Mediterranean Aquaculture Journal, v. 1, p. 45-55, 2008.

AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, v. 264, p. 140-147, 2007.

AVNIMELECH, Y. Tilapia harvest microbial flocs in active suspension research pond. Global Aquaculture Advocate, p. 57-58, Oct. 2005.

AVNIMELECH, Y. Tilapia production using biofloc technology: saving water, waste recycling improves economics. Global Aquaculture Advocate, p. 66-68, May/June 2011.

AYRES, M. et al. BIOESTAT:aplicações estatísticas nas áreas das ciências biológicas e médicas. Belém: MCT: IDSM: CNPq, 2007. 367 p.

AZIM, M. E.; LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, v. 283, p. 29-35, 2008.

BARAK, Y. et al. Phosphorus removal in a marine prototype, recirculating aquaculture system. Aquaculture, v. 220, p. 313-326, 2003.

CHAMBERLAIN, G. et al. Advantages of aerated microbial reuse systems with balanced C:N - I: Nutrient transformation and water quality benefits. Global Aquaculture Advocate, p. 53-56, Apr. 2001.

DE SCHRYVER, P. D. et al. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, v. 277, p. 125-137, 2008.

EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, v. 257, p. 346-358, 2006.

ELÍAS, J. A. L. et al. Proximate composition of bioflocs in culture systems containing hybrid red tilapia fed diets with varying levels of vegetable meal inclusion. North American Journal of Aquaculture, v. 77, n. 1, p. 102-109, 2015.

EL-SHERIF, M. S.; FEKY, E.; AMAL, M. Effect of ammonia on Nile tilapia (O. niloticus) performance and some hematologicaِl and histological measures. In: INTERNATIONAL SYMPOSIUM ON TILAPIA IN AQUACULTURE, 8., 2008, Cairo. Proceedings… Cairo, 2008. p. 513-530.

EMERENCIANO, M. G. C. et al. Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase berçário em meio heterotrófico. Acta Scientiarum. Biological Sciences, v. 29, n. 1, p. 1-7, 2007.

GRYSCHEK, S. F. B.; OETTERER, M.; GALLO, C. R. Characterization and frozen storage stability of minced Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.) Journal of Aquatic Food Product Technology, v. 12, n. 3, p. 57-69, 2003.

HARGREAVES, J. A. Biofloc production systems for aquaculture. Stoneville, MS: Southern Regional Aquaculture Center, 2013. (SRAC Publication No. 4503).

KUBITZA, F. Tilápia: tecnologia e planejamento na produção comercial. 2. ed. rev. ampl. Jundiai: Acqua Supre Comércio. e Suprimentos.para Aquicultura, 2011. 316 p.

LIMA, E. C. R. et al. Cultivo da tilápia do Nilo Oreochromis niloticus em sistema de bioflocos com diferentes densidades de estocagem. Revista Brasileira de Saúde e Produção Animal, v. 16, n. 4, p. 948-957, 2015.

LITTLE, D. C. et al. Options for producing a warm-water fish in the UK: limits to “Green Growth”?. Trends Food Science and Technology, v. 19, p. 255-264, 2008.

LUO, G. et al. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, v. 422-423, p. 1-7, 2014.

MEILGAARD, M.; CIVILLE, G. V.; CARR, T. B. Sensory evaluation techniques. 3rd ed. Boca Raton: CRC Press, 1999, 387 p.

MOREIRA, R. T. Desenvolvimento de embutido emulsionado de tilápia (Oreochromis niloticus) estabilizado com hidrocolóides. 2005. 156 f. Tese (Doutorado em Tecnologia de Alimentos) - Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2005.

PÉREZ-FUENTES, J. A. et al. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, v. 452, p. 247-251, 2016.

PIEDRAHITA, R. H. Reducing the potential environmental impact of thank aquaculture effluents through intensification and recirculation. Aquaculture, v. 226, p. 35-44, 2003.

RAKOCY, J. E. et al. Intensive tank culture of tilapia with a suspended, bacterial-based treatment process: new dimensions in farmed tilapia. In: INTERNATIONAL SYMPOSIUM ON TILAPIA IN AQUACULTURE, 6., 2004, Manila. Proceedings… Manila, 2004. v. 6, p. 584-596.

RAY, A. J. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, v. 299, p. 89-98, 2010.

SAMOCHA, T. M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, v. 36, p. 184-191, 2007.

SIMÕES, M. R. et al. Composição físico-química, microbiológica e rendimento do filé de tilápia tailandesa (Oreochromis niloticus). Ciência e Tecnologia de Alimentos, v. 27, n. 3, p. 608-613, 2007.

VILA-NOVA, C. M. V. M.; GODOY, H. T.; ALDRIGUE, M. L. Composição química, teor de colesterol e caracterização dos lipídeos totais de tilápia (Oreochromis niloticus) e pargo (Lutjanus purpureus). Ciência e Tecnologia de Alimentos, v. 25, n. 3, p. 430-436, 2005.

WASIELESKY, W. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, v. 258, p. 396-403, 2006.

WIDANARNI; EKASARI, J.; MARYAM, S. Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, v. 19, n. 2, p. 73-80, 2012.

YANBO, W. et al. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiology and Biochemistry, v. 32, p. 49-54, 2006.

YUAN, D. et al. Effects of addition of red tilapia (Oreochromis spp.) at different densities and sizes on production, water quality and nutrient recovery of intensive culture of white shrimp (Litopenaeus vannamei) in cement tanks. Aquaculture, v. 298, p. 226-238, 2010.

ZAR, J. H. Biostatistical analysis. New Jersey: Prentice Hall, 1996. 662 p.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.