Silicon as an attenuator of salt stress in Brachiaria brizantha ‘MG5’

Maria Isabel Leite da Silva, Willian Gonçalves do Nascimento, Carlos Ribeiro Rodrigues, Maria Alice Vasconcelos da Silva, Géssica Solanna Calado Soares

Resumo


The aim of this study was to evaluate the effect of salt stress and silicon fertiliser on growth and nutritional value in Brachiaria brizantha ‘MG5’. The experimental design was completely randomised in a 4 x 5 x 3 factorial scheme with four replications; the treatments consisted of four concentrations of sodium chloride (0, 20, 40 and 60 mmol L-1), with five concentrations of silicon (0, 1, 2, 3 and 4 mmol L-1) in the nutrient solution, and three cutting periods (30, 60 and 90 days). The concentration of 4 mmol L-1 silicon minimised the detrimental effects of the sodium chloride on regrowth. However, the levels of silicon application were not sufficient to reduce the harmful effects of the sodium chloride on nutritional value or on dry-matter production in Brachiaria brizantha ‘MG5’.


Palavras-chave


Silicon fertiliser; Salinity; Pasture quality

Texto completo:

PDF

Referências


ABDALLA, M. M. Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agriculture and Biology Journal of North America, v. 2, n. 2, p. 207-220, 2011.

AHMAD, P. et al. Ecophysiology and responses of plants under salt stress. In: HASANUZZAMAN, M.; NAHAR, K.; FUJITA, M. (Ed.). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. 2013. cap. 2, p. 25-87.

ASHRAF, M. et al. Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil, v. 326, p. 381-391, 2010.

ASHRAF, M.; HARRIS, P. J. C. Photosynthesis under stressful environments: an overview. Photosynthetica, v. 51, n. 2, p. 163-190, 2013.

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official methods of analysis. 15th edition. Arlington, 1990.

BALAKHNINA, T.; BORKOWSKA, A. Effects of silicon on plant resistance to environmental stresses: review. International Agrophysics, v. 27, p. 225-232, 2013.

BERCHIELLI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. Nutrição de ruminantes. 2. ed. Jaboticabal: Funep, 2011. 616 p.

BEZERRA NETO, E.; BARRETO, L. Análises químicas e bioquímicas em plantas. Recife: Editora Universitária da UFRPE, 2011. 261 p.

CARVALHO, C. A. B. et al. Performance of dairy heifers raised on Xaraés palissadgrass (Brachiaria brizantha cv. Xaraés) pasture supplemented with two types of mineral mixture. Pesquisa Veterinária Brasileira, v. 34, n. 1, p. 46-50, 2014.

COSTA, K. A. P. et al. Intervalo de corte na produção de massa seca e composição químico-bromatológica da Brachiaria brizantha cv. MG-5. Revista Ciência e Agrotecnologia, v. 31, n. 4, p. 1197-1202, 2007.

DETMANN, E. et al. Métodos para análise de alimentos. Rio Branco: Suprema, 2012. 214 p.

HOAGLAND, D. R.; ARNON, D. I. The water culture method of growing plants without soil. Berkeley: California Agriculture Experimental Station, 1950. 32 p. (Circular 347).

LIANG, Y. et al. Silicon in agriculture. In: LIANG, Y. et al. Silicon-mediated tolerance to salt stress. Springer Science, 2015. cap. 6, p. 123-142.

MA, J. F.; YAMAJI, N. A cooperated system of silicon transport in plants. Trends in Plant Science, v. 20, n. 7 p.435-442, 2015.

MELO, S. P.; MONTEIRO, F. A.; BONA, F. D. Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha. Plant Soil, v. 336, p. 241-249, 2010.

MOUSSA, H. R.; GALAD, M. A. R. Comparative response of salt tolerant and salt sensitive maize (Zea mays L.) cultivars to silicon. European Journal of Academic Essays, v. 2, n.1, p. 1-5, 2015.

PARVEEN, N.; ASHRAF, M. Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pakistan Journal of Botany, v. 42, n. 3, p. 1675-1684, 2010.

R CORE TEAM. R: a language and environment for statistical computing. Viena, Austria: R Foundation for Statistical Computing, 2014.

RAHIMI, R. et al. Effects of salt stress and silicon nutrition on cholorophyll content, yield and yield components in fennel (Foeniculum vulgare Mill.). International Journal of Agriculture and Crop Sciences, v. 4, n. 21, p. 1591-1595, 2012.

RAVEN, P. H.; EVERT, R. F.; EICHHORN, S. E. Biologia vegetal. 8. ed. Rio de Janeiro: Guanabara Koogan, 2014. 1637 p.

ROHANIPOOR, A. et al. Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. Journal of Biodiversity and Environmental Sciences, v. 7, n. 20, p. 71-79, 2013.

SHAHZAD, M. et al. Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. Journal of Agronomy and Crop Science, v. 198, p. 46-56, 2012.

SYSTAT SOFTWARE INC. SigmaPlot Version 11.0. Point Richmond, California. 2008.

TAIZ, L.; ZEIGER E. Fisiologia vegetal. 5. ed. Porto Alegre: Artmend, 2013. 918 p.

TAMELE, O. H. Manejo de híbridos de sorgo e cultivares de milheto em sistema de pastejo rotativo. 2009. 65 f. Dissertação (Mestrado em Zootecnia) - Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, 2009.

YADAV, S. et al. Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, v. 32, p. 667-685, 2011.

YIN, L. et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant, v. 35, p. 1-9, 2013.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.