GAB model and the thermodynamic properties of moisture sorption in soursop fruit powder

Fernanda Machado Baptestini, Paulo Cesar Corrêa, Afonso Mota Ramos, Mateus da Silva Junqueira, Iasmine Ramos Zaidan

Resumo


The aim of this study was to model and determine the thermodynamic properties of moisture sorption in soursop fruit powder. The isotherms were determined by the static method at temperatures of 10, 20, 30, 40 and 50 °C, and a water activity of between 0.113 and 0.868 (decimal). The GAB model effectively described the moisture sorption phenomenon of soursop powder. The monolayer moisture content ranged from 12.589 to 9.109% db. The enthalpy values related to the GAB model were negative, with -2581.035 kJ kg-1 for C0 and -107,758 kJ kg-1 for K0. The isosteric heat of sorption, entropy and Gibbs free energy had a high correlation with the equilibrium moisture content, and the correlation between enthalpy and entropy was confirmed for moisture sorption in soursop powder.


Palavras-chave


Monolayer; Entropy; Gibbs free energy; Annona muricata L.

Texto completo:

PDF

Referências


ASCHERI, D. P. R. et al. Propriedades termodinâmicas de adsorção de água do amido de rizomas do lírio-do-brejo (Hedychium coronarium). Ciência e Tecnologia de Alimentos, v. 29, n. 2, p. 454-462, 2009.

BERISTAIN, C. I.; GARCIA, H. S.; AZUARA, E. Enthalpy-entropy compensation in food vapor adsorption. Journal of Food Engineering, v. 30, p. 405-415, 1996.

BEZERRA, T. S. et al. Avaliação físico-química e aplicação de modelos matemáticos na predição do comportamento de polpas de manga desidratadas em pó. Revista Ceres, v. 58, p. 278-283, 2011.

BEZERRA, T. S. et al. Comportamento higroscópico de pós de manga das variedades coité e espada e avaliação das características físico-químicas. Ciência Rural, v. 40, p. 2186-2192, 2010.

BRUNAUER, S. et al. On a theory of the van der Waals adsorption of gases. Journal of the America Chemical Society, v. 62, p. 1723-1732, 1940.

CANO-HIGUITA, D. M. et al. Influence of alternative drying aids on water sorption of spray dried mango mix powders: a thermodynamic approach. Food and Bioproducts Processing, v. 93, p. 19-28, 2015.

CORRÊA, P. C. et al. Isotermas de sorção de água de frutos de Coffea canephora. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, p. 1047-1052, 2014.

CORRÊA, P. C.; OLIVEIRA, G. H. H.; SANTOS, E. S. Thermodynamic properties of agricultural products processes. In: ARANA, I. (ed). Physical properties of foods: novel measurement techniques and applications. Boca Raton: CRC Press, 2012. p. 131-141.

COSTA, J. M. G. et al. Physical and thermal stability of spray-dried swiss cheese bioaroma powder. Drying Technology, v. 33, p. 346-354, 2015.

DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de alimentos de Fennema. 4. ed. Porto Alegre: Artmed, 2010. 900 p.

FABRA, M. J.; CASTRO, D.; CHIRALT, A. Effect of maltodextrins inthe water-content–water activity-glass transition relationships of noni (Morinda citrifolia L.) pulp powder. Journal of Food Engineering, v. 103, p. 47-51, 2011.

GONELI, A. L. D. et al. Water sorption properties of coffee fruits, pulped and green coffee. LWT - Food Science and Technology, v. 50, n. 2, p. 386-391, 2013.

HENAO, J. D.; QUEIROZ, M. R.; HAJ-ISA, N. M. A. Umidade de equilíbrio de café cereja descascado baseada em métodos estático e dinâmico. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 13, p. 470-476, 2009.

IGLESIAS, H.; CHIRIFE, J. Prediction of the effect of temperature on water sorption isotherms of food material. Journal of Food Technology, v. 11, p. 109-116, 1976.

KALEEMULLAH, S.; KAILAPPAN, R. Monolayer moisture, free energy change and fractionation of bound water of red chillies. Journal of Stored Products Research, v. 43, p. 104-110, 2007.

KRUG, R. R.; HUNTER, W. G.; GRIEGER, R. A. Enthalpy-entropy compensation. 1 - Some fundamental statistical problems associated with the analysis of Van’t Hoff and Arrhenius data. Journal of Physical Chemistry, v. 80, p. 2335-2341, 1976a.

KRUG, R. R.; HUNTER, W. G.; GRIEGER, R. A. Enthalpy-entropy compensation. 2 - Separation of the chemical from the statistical effect. Journal of Physical Chemistry, v. 80, p. 2341-2351, 1976b.

LAVOYER, F. C. G. et al. Study of adsorption isotherms of green coconut pulp. Food Science and Technology, v. 33, n. 1, p. 68-74, 2013.

MASUZAWA, M.; STERLING, C. Gel-water relation shisps in hydrophilic polymers: thermodynamics of sorption of water vapour. Journal of Polymer Science, v. 12, p. 20-23, 1968.

MEDEIROS, M. L.; LANNES, S. C. S. Propriedades físicas de substitutos do cacau. Ciência e Tecnologia de Alimentos, v. 30, p. 243-253, 2010. Suplemento 1.

MELO, W. S. et al. Hygroscopic behavior of buriti (Mauritia flexuosa) fruit. Ciência e Tecnologia de Alimentos, v. 31, p. 935-940, 2011.

MOHSENIN, N. N. Physical properties of plant and animal materials. New York: Gordon and Breach, 1986. cap. 3, p. 51-87.

MOREIRA, T. B. et al. Comportamento das isotermas de adsorção do pó de polpa de manga liofilização. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, p. 1093-1098, 2013.

MUZAFFAR, K.; KUMAR, P. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, v. 291, p. 322-327, 2016.

OLIVEIRA, G. H. H. et al. Application of GAB model for water desorption isotherms and thermodynamic analysis of sugar beet seeds. Journal of Food Process Engineering, v. 40, p. 1-8, 2017b.

OLIVEIRA, G. H. H. et al. Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.). International Journal of Food Science & Technology, v. 45, p. 546-554, 2010.

OLIVEIRA, G. H. H. et al. Evaluation of thermodynamics properties using GAB model to describe the desorption process cocoa beans. International Journal of Food Science & Technology, v. 46, p. 2077-2084, 2011.

OLIVEIRA, G. H. H. et al. Roasting, grinding, and storage impact on thermodynamic properties and adsorption isotherms of arabica coffee. Journal of Food Processing and Preservation, v. 41, p. 12779, 2017a.

PEDRO, M. A. M.; TELIS-ROMERO, J.; TELIS, V. R. N. Effect of drying method on the adsoption isotherms and isosteric heat of passion fruit pulp powder. Ciência e Tecnologia de Alimentos, v. 30, n. 4, p. 993-1000, 2010.

PERDOMO, J. et al. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, v. 76, p. 305-313, 2009.

PÉREZ-ALONSO, C. et al. Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, v. 77, p. 753-760, 2006.

RESENDE, O. et al. Cinética de secagem de clones de café (Coffea canephora Pierre) em terreiro de chão batido. Acta Amazonica, v. 40, p. 247-256, 2010.

RIZVI, S. S. H. Thermodynamic properties of foods in dehydration. In: RAO, M. A.; RIZVI, S. S. H. Engineering properties of foods. New York: Academic Press, 1995. p. 223-309.

ROSA, G. S.; MORAES, M. A.; PINTO, L. A. A. Moisture sorption properties of chitosan. Lebensmittel-Wissenschaft und - Technologie, v. 43, p. 415-420, 2010.

STATSOFT INC. Programa computacional Statistica. 7.0. E.A.U. 2004.

TIMMERMANN, E. O.; CHIRIFE, J.; IGLESIAS, H. A. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, v. 48, p. 19-31, 2001.

WANG, N.; BRENNAN, J. G. Moisture sorption isotherm characteristics of potato at four temperatures. Journal of Food Engineering, v. 14, p. 269-287, 1991.

XIAO, Q.; TONG, Q. Thermodynamic properties of moisture sorption in pullulan-sodium alginate based edible films. Food Research International, v. 54, p. 1605-1612, 2013.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.