The culture of Nile tilapia at different salinities using a biofloc system

Rafael Liano de Souza, Eduardo Cesar Rodrigues de Lima, Fabiana Penalva de Melo, Maria Gabriela Ferreira Padilha, Eudes de Souza Correia


The influence of water salinity on the culture of Nile tilapia with biofloc was evaluated using indicators of water quality, zootechnical performance and animal welfare. Five treatments of different salinities were adopted (0, 4, 8, 12 and 16 g L-1) with three replications. The tilapia were cultured for 90 days and stocked in glass fiber tanks (800 L) at a density of 30 fish m-3 with a mean initial weight of 93.8 ± 0.89 g. Water temperature, chlorophyll-a, sedimentable solids and total suspended solids showed no difference between salinities (p>0.05). The levels of total ammonia nitrogen (3.94 mg L-1) and nitrite nitrogen (0.82 mg L-1) were lower at the salinity of 0 g L-1 compared to the highest salinity (16 g L-1) (p≤0.05). The final weight ranged from 256 to 280 g, with a survival rate of 97 to 100% (p>0.05), which resulted in a productivity of 7.4 to 8.4 kg m-3 (p≤0.05). Glucose was above the baseline value (≤ 60 mg.dL-1) in the 16 gL-1 treatment (76 mg dL-1), and fish growth at the salinities of 8 and 12 g L-1 showed positive allometry (3.020) compared to the other treatments. This demonstrated that it was possible to culture Nile tilapia at salinities of up to 16 g L-1, without compromising performance.


Fish farming; Brackish water; Microbial floc; Oreochromis niloticus

Texto completo:



AL-AMOUDI, M. M. Acclimation of commercially cultured Oreochromis species to seawater- an experimental study. Aquaculture, v. 65, n. 3, p. 333-342, 1987.

ALVARENGA, E. R. et al. Moderate salinities enhance growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in the biofloc system. Aquaculture Research, p. 1-8, May 2018.

AMERICAN PUBLIC HEALTH ASSOCIATION. Standard methods for the examination of water and wastewater. 19th ed. Washington, D.C.: APHA, 1995, 1082 p.

AVNIMELECH, Y. Biofloc technology: a practical guide book. 2nd ed. Baton Rouge: The Word Aquaculture Society, 2012. 271 p.

AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, v. 264, n. 1/4, p. 140-147, 2007.

AZIM, M. E; LITTLE, D. C. The biofloc technology (BFT) in indoor tanks water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, v. 283, n. 2, p. 29-35, 2008.

BOEUF, G.; PAYAN, P. How should salinity influence fish growth? Comparative Biochemistry and Physiology, v. 130, n. 4, p. 411-423, 2001.

CAVALCANTE, D. de H.; SÁ, M. C. V. Efeito da fotossíntese na alcalinidade da água no cultivo da tilápia do Nilo. Revista Ciência Agronômica, v. 41, n. 1, p. 67-72, 2010.

CNAANI, A.; HULATA, G. Improving salinity tolerance in tilapias: past experience and future prospects. The Israeli Journal of Aquaculture, v. 63, n. 1, p. 1-21, 2011.

CRAB, R. et al. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, v. 40, n. 3, p. 105-112, 2009.

DE SCHRYVER, P. et al. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, v. 277, n. 1, p. 125-137, 2008.

EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, v. 257, n. 3, p. 346–358, 2006.

EL-SAYED, A. -F. M. Tilapia culture. Wallingford, Oxfordshire: CABI Publishing, 2006. 277 p.

ERN, R. et al. Effect of salinity on oxygen consumption in fishes: a review. Journal of Fish Biology, v. 84, n. 4, p. 1210-1220, 2014.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Fishery Information, Data and Statistics Unit. FishStat J: universal software for fishery statistical time series. Version 2.1.0. Rome, 2016. Disponível em: . Acesso em:

FROESE, R. Cube law, condition factor and weight–length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology, v. 22, n. 4, p. 241-253, 2006.

GOLDENFARB, P. B.; BOWYER, F. P.; HALL, E. Reproducibility in the hematology laboratory: the microhematocrit determination. American Journal of Clinical Pathology, v. 56, n. 1, p. 35-39, 1971.

KAMAL, A. H. M. M.; MAIR, G. C. Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture, v. 247, p. 189-201, 2005.

LAWSON, E. O.; ANETEKHAI, M. A. Salinity tolerance and preference of hatchery reared Nile tilapia, Oreochromis niloticus (Linneaus, 1758). Asian Journal of Agricultural Sciences, v. 3, n. 2, p. 104-110, 2011.

LIMA, E. C. R. et al. Culture of Nile tilapia in a biofloc system with different sources of carbon. Revista Ciência Agronômica, v. 49, n. 3, p. 458-466, 2018.

LUO, G. et al. Comparing salinities of 0, 10 and 20 in biofloc genetically improved farmed tilapia (Oreochromis niloticus) production systems. Aquaculture and Fisheries, v. 2, p. 220-226, 2017.

LUO, G. et al. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, v. 422-423, n. 2, p. 1-7, 2014.

MENA-HERRERA, A.; SUMANO-LÓPEZ, H.; MACÍAS-ZAMORA, R. Effects of water salinity on the growth of hybrid red tilapia Oreochromis mossambicus (Peters) x Oreochromis niloticus (Linnaeus), cultured under controlled laboratory conditions. Veterinaria México, v. 33, n. 1, p. 39-48, 2002.

NUSCH, E. A. Comparison of different methods for chlorophyll and phaepigment determination. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie, v. 14, n.11, p. 14-36. 1988.

PEREIRA, D. S. P. et al. Parâmetros hematológicos e histológicos de tilápia do Nilo em resposta ao desafio de diferentes níveis de salinidade. Boletim do Instituto de Pesca, v. 42, n. 3, p. 635-647, 2016.

SCHOFIELD, P. J. et al. Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities. Marine and Freshwater Research, v. 62, n. 5, p. 439-449, 2011.

SILVA, R. D. et al. Parâmetros hematológicos e bioquímicos da tilápia do Nilo (Oreochromis niloticus L.) sob estresse por exposição ao ar. Pesquisa Veterinária Brasileira, v. 32, n. 1, p. 99-107, 2012.

SURESH, A. V; LIN, C. K. Tilapia culture in saline waters: a review. Aquaculture, v. 106, n. 3/4, p. 201-226, 1992.

TAVARES-DIAS, M.; FAUSTINO, C. D. Parâmetros hematológicos da tilápia do Nilo Oreochromis niloticus (Cichlidae) em cultivo extensivo. Ars Veterinária, v. 14, n. 3, p. 254-263, 1998.

VIJAYAN, M. M. et al. Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comparative Biochemistry and Physiology, v. 116C, n. 1, p. 89-95, 1997.

VILLEGAS, C. T. Evaluation of the salinity tolerance of Oreochromis mossambicus, O. niloticus and their F1 hybrids. Aquaculture, v. 85, n. 1/4, p. 281-292, 1990.

WATANABE, W. O. et al. Culture of Florida red tilapia in marine cages: the effect of stocking density and dietary protein on growth. Aquaculture, v. 90, n. 2, p. 123-134, 1990.

WIDANARNI; EKASARI, J.; MARYAM, S. Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, v. 19, n. 2, p. 73-80, 2012.

ZAR, J. H. Biostatistical analysis. New Jersey: Prentice Hall, 1996. 662 p.

Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site:, e-mail: - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.