Production components in transformed and untransformed ‘Micro-Tom’ tomato plants

Cristina Moll Huther, Emanuela Garbin Martinazzo, Anderson Augusto Schock, Cesar Valmor Rombaldi, Marcos Antonio Bacarin

Resumo


Changes to the amounts of certain proteins have resulted in several studies, among them the so-called heat shock proteins (HSP), which take many forms, most of them constitutive. However, other forms may be inducible by a particular stress factor. The ‘Micro-Tom’ tomato is considered a model for experimental studies due to having suitable characteristics, such as reduced size, short generation time, and ease of transformation. Growth and production components were therefore evaluated in ‘Micro-Tom’ tomato plants transformed for different levels of mitochondrial HSP (MT-sHSP23.6). Plants from genotypes of the ‘Micro-Tom’ tomato (untransformed, and transformed with overexpression and with expression silencing) were grown under controlled conditions of temperature, photoperiod and photon flux density. To obtain the data, successive collections were carried out at regular intervals (21 days) throughout the development cycle of the plants, starting from the 21st day after transplanting (DAT). Total dry matter, leaf area, dry-weight partitioning between the plant organs, and production components were determined in the three genotypes. From interpretation of the results, it was found that plants transformed with overexpression of MT-sHSP23.6 displayed greater production capacity, considering the fresh weight of the fruit; but in general, the data showed that genetic transformation did not bring about major changes in growth, since the three genotypes displayed similar behaviour.


Palavras-chave


Solanum lycopersicum Mill; Dry matter distribution; Fruit production

Texto completo:

PDF

Referências


ALBUQUERQUE NETO, A. A. R.; PEIL, R. M. N.Produtividade biológica de genótipos de tomateiro em sistema hidropônico no outono/inverno. Horticultura Brasileira, v. 30, n. 4, p. 613-619, 2012.

ALMEIDA, V. S. Sistema Viçosa: nova proposta para o cultivo do tomateiro. 2012. 46 f. Dissertação (Mestrado em Fitotecnia) - Programa de Pós-Graduação em Fitotecnia, Universidade Federal de Viçosa, Viçosa, MG, 2012.

ALVARENGA, M. A. R. Tomate: produção em campo, em casa-de-vegetação e em hidroponia. Lavras: UFLA, 2004. 400 p.

BASHA, E. M.; WATERS, E. R.; VIERLING, E. Triticum aestivum cDNAs homologous to nuclear-encoded mitochondrion-localized small heat shock proteins. Plant Science, v. 141, p. 93-103, 1999.

BEZERRA NETO, E.; NOGUEIRA, R. J. M. C. Estudo comparativo do crescimento de plantas de tomate e milho sob condições de salinidade. Brazilian Archives Biology and Technology, v. 42, n. 4, p. 471-475, 1999.

CALIMAN, F. R. B. Enriquecimento com CO2 por meio de compostagem para a cultura do tomateiro em ambiente protegido. 2008. 79 f. Tese (Doutorado em Fitotecnia) - Programa de Pós-Graduação em Fitotecnia, Universidade Federal de Viçosa, Viçosa, MG, 2008.

CHAVES, A. L. et al. Ciclo de maturação e produção de etileno de tomates (Lycopersicon esculentum, Mill.) transgênicos. Food Science and Technology, v. 18, n. 1, p. 116-120, 1998.

CHEN, X. et al. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, v. 1844, p. 818-828, 2014.

CHO, E. K.; HONG, C. B. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Reports, v. 25, n. 4, p. 349-358, 2006.

EDWARDS, D.; JOLLIFFE, P.; EHRET, D. Canopy profiles of starch and leaf mass per area in greenhouse tomato and the relationship with leaf area and fruit growth. Scientia Horticulturae, v. 125, n. 4, p. 637-647, 2010.

FAYAD, J. A. et al. Absorção de nutrientes pelo tomateiro cultivado sob condições de campo e de ambiente protegido. Horticultura Brasileira, v. 20, n. 1, p. 90-94, 2002.

FAYAD, J. A. et al. Crescimento e produção do tomateiro cultivado sob condições de campo e de ambiente protegido. Horticultura Brasileira, v. 19, n. 3, p. 232-237, 2001.

GAO, Z.; SAGI, M.; LIPS, S. H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Science, v. 135, n. 2, p. 149-159, 1998.

GURLEY, W. B. HSP 101: A key component for the acquisition of thermotolerance in plants. Plant Cell, v. 12, n. 4, p. 457-460, 2000.

HEUVELINK, E. Effect of fruit load on dry matter partitioning in tomato. Sientia Horticulturae, v. 69, n. 1, p. 51-59, 1997.

HOAGLAND, D.; ARNON, D. I. The water culture method for growing plants without soil. Berkeley: University of California, 1950. 32 p. (California Agricultural Experiment Station. Circular 347).

HUTHER, C. M. et al. Physiological response to heat stress of tomato ‘Micro-Tom’ plants expressing high and low levels of mitochondrial sHSP23.6 protein. Plant Growth Regulation, v. 70, n. 2, p. 175-185, 2013.

IQBAL, N. et al. Differential accumulation of high and low molecular weight heat shock proteins in Basmati rice (Oryza sativa L.) cultivars. Genetic Resources Crop Evolution, v. 57, p. 65-70, 2010.

JACOBY, R. P. et al. Mitochondrial composition, function and stress response in plants. Journal of Integrative Plant Biology, v. 54, n. 11, p. 887-906, 2012.

KHUONG, T. T. H. et al. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number. Plant Cell Reports, v. 32, n. 9, p. 1441-54, 2013.

LOPES, W. A. R. Análise do crescimento de tomate ‘SM-16’ cultivado sob diferentes coberturas de solo. 2010. 92 f. Dissertação (Mestrado em Fitotecnia) - Programa de Pós-Graduação em Fitotecnia, Universidade Federal Rural do Semiárido, Mossoró, 2010.

MARTINS, G.; VASCONCELLOS, E.F.C.; LUCCHESI, A. A. Correlações entre parâmetros da análise de crescimento de cultivares de tomateiro (Lycopersicon esculentum Mill.). Anais da Escola Superior de Agricultura “Luiz de Queiroz”, v. 42, n. 2, p. 401-428, 1985.

MEISSNER, R. et al. A new model system for tomato genetics. The Plant Journal, v. 12, n. 6, p. 1465-1472, 1997.

PEGORARO, C. et al. Effects os hypoxia storage on gene transcript accumulation during tomato fruit ripening. Brazilian Society of Plant Physiology, v. 24, n. 2, p. 141-148, 2012.

PEGORARO, C. et al. Importance of heat shock proteins in maize. Journal of Crop Science and Biotechnology, v. 14, n. 2, p. 85-95, 2011.

PINO, L. E. et al. The Rg1 allele as a valuable tool for genetic transformation of the tomato Micro-Tom model system. Plant Methods, v. 6, n. 23, p. 1-11, 2010.

PIVETTA, C. R. et al. Emissão e expansão foliar em três genótipos de tomateiro (Lycopersicon esculentum Mill.). Ciência Rural, v. 37, n. 5, p. 1274-1280, 2007.

PRATT, H. K.; WORKMAN, M. Studies on the physiology of tomato fruits. III. The efects of ethylene on respiration and ripening behaviour of fruits stored at 20 oC after harvest. Proceedings of the American Society for Horticultural Science, v. 81, p. 467-478, 1962.

QUEITSCH, C.; HONG, S-W.; LINDQUIST, S. Heat shock protein 101 plays a crucial role in thermotolerance in arabidopsis. The Plant Cell, v. 12, n. 4, p. 479-492, 2000.

RAMPINO, P. et al. Acquisition of thermotolerance and HSP gene expression in durum wheat (Triticum durum Desf.) cultivars. Environmental and Experimental Botany, v. 66, n. 2, p. 257-264, 2009.

RICHARDS, F. J. The quantitative analysis of growth. In: STEWARD, F. C. Plant Physiology: a treatise. New York: Academic Press, 1969. v. 5A, p. 3-76.

SHAMI, N. J. I. E.; MOREIRA, E. A. M. Licopeno como agente antioxidante. Revista Nutrição, v. 17, n. 2, p. 227-236, 2004.

VÁSQUEZ-ROBINET, C. et al. Differential expression of heat shock protein genes in preconditioning for photosynthetic acclimation in water-stressed loblolly pine. Plant Physiology and Biochemistry, v. 48, p. 256-264, 2010.

WATERS, E. R. The evolution, function, structure, and expression of the plant sHSPs. Journal Experimental Botany, v. 64, n. 2, p. 391-403, 2013.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.