Excesso de ferro sobre o crescimento e a composição mineral em Eugenia uniflora L.

Gládis de Oliveira Jucoski, José Cambraia, Cleberson Ribeiro, Juraci Alves de Oliveira

Resumo


O ferro, embora micronutriente essencial, quando em excesso pode causar redução no crescimento e, consequentemente, na produtividade das plantas. O objetivo do presente trabalho foi avaliar a absorção, o acúmulo, a distribuição do Fe e suas consequências sobre o crescimento e composição mineral de plantas jovens de Eugenia uniflora L.. As plantas foram expostas às concentrações de Fe 0,045 (controle), 1,0 e 2,0 mM, aplicado na forma de FeEDTA, em solução nutritiva de Hoagland, pH 5,0, durante 15; 30 e 45 dias e, então, foram avaliados o número de folhas, a altura da parte aérea, o comprimento da raiz primária, a massa seca de raízes, caule e folhas e os teores de clorofila, carotenóides totais e minerais. Plantas expostas aos tratamentos com Fe 1,0 e 2,0 mM apresentaram aumento nos teores deste elemento em folhas, caule e raízes em relação às plantas-controle, especialmente aos 45 dias de exposição. Sob esta condição, as plantas exibiram sintomatologia típica de toxidez de Fe, caracterizada por bronzeamento foliar, escurecimento das raízes, redução no número de folhas, na altura da parte aérea, no comprimento da raiz principal, na produção de massa seca e nos teores de pigmentos cloroplastídicos. O excesso de Fe modificou a partição da biomassa e promoveu redução nos teores de P, Zn, Cu e Mn, especialmente nas raízes. Além de um efeito direto do Fe em excesso, a desordem nutricional resultante pode estar associada aos efeitos restritivos sobre o crescimento vegetativo inicial das plantas de Eugenia uniflora L..

Palavras-chave


Myrtaceae; Nutrientes minerais; Pitanga; Toxidez de ferro

Texto completo:

PDF

Referências


ADAMSKI, J. M. et al. Excess iron-induced changes in the photosynthetic characteristics of sweet potato. Journal of Plant Physiology, v. 168, p. 2056-2062, 2011.

ADAMSKI, J. M. et al. Responses to excess iron in sweet potato: impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiologia Plantarum, v. 34, p. 1827-1836, 2012.

ALBANO, J. P.; HALBROOKS, M. C.; MILLER, W. B. Iron toxicity stress causes bronze speckle, a specific physiological disorder of marigold (Tagetes erecta L.). Journal of the American Society of Horticultural Science, v. 121, p. 430-437, 1996.

AUDEBERT, A.; FOFANA, M. Rice yield gap due to iron toxicity in West Africa. Journal of Agronomy and Crop Science, v. 195, p. 66-76, 2009.

BARKER, A. V.; PILBEAM, D. J. Handbook of Plant Nutrition. Boca Raton: CRC Taylor & Francis, 2007. 613 p.

BECKER, M.; ASCH, F. Iron toxicity in rice - conditions and management concepts. Journal of Plant Nutrition and Soil Science, v. 168, p. 558-573, 2005.

BENCKISER, G. et al. Effect of iron fertilization on exudation activity, dehydrogenase activity, iron-reducing populations and Fe++ formation in the rhizosphere of rice (Oryza sativa L.) in relation to iron toxicity. Plant and Soil, v. 79, p. 305-316, 1984.

CHATTERJEE C.; GOPAL, R.; DUBE, B. K. Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Scientia Horticulturae, v. 108, p. 1-6, 2006.

CHEN, R. F. et al. Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress. Annals of Botany, v. 98, p. 389-395, 2006.

Dobermann, A.; FAIRHURST, T. Rice: nutrient disorders and nutrient management. Manila: International Rice Research Institute, 2000. 191 p.

FAGERIA, N. K. et al. Iron toxicity in lowland rice. Journal of Plant Nutrition, v. 31, p. 1676-1697, 2008.

GUERINOT, M. L., YI, Y. Iron: nutritious, noxious, and not readily available. Plant Physiology, v. 104, p. 815-820, 1994.

HOAGLAND, D. R.; ARNON, D. I. The method for growing plants without soil: water-culture. Circular of the Agricultural Experimentation Station, v. 347, p. 1-32, 1938.

HOWELLER, R. H. Iron-induced oranging disease of rice in relation to physical-chemical changes in a flooded oxisol. Soil Science Society of America Proceedings, v. 37, p. 898-903, 1973.

JUCOSKI, G. O. et al. Impact of iron toxicity on oxidative metabolism in young Eugenia uniflora L. plants. Acta Physiologia Plantarum, v. 35, p. 1645-1657, 2013.

KUKI, K. N. et al. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L.. Science of the Total Environment, v. 403, p. 207-214, 2008.

LINDEMAN, W. Observations on the behaviour of phosphate compounds in Chlorella at the transition from dark to light. United Nations International Conference on the Peaceful Uses of Atomic Energy, v. 2, p. 8-15, 1958.

LIU, H. et al. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, v. 394, p. 361-368, 2008.

MARSCHNER, H.; KIRKBY, E.A.; CAKMAK, I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, v. 47, p. 1255-1263, 1996.

MEHRABAN, P.; ZADEH, A. A.; SADEGHIPOUR, H. R. Iron toxicity in rice (Oryza sativa L.), under different potassium nutrition. Asian Journal of Plant Nutrition, v. 7, p. 251-259, 2008.

MORTON, J. F. Fruits of warm climates. 1987. Disponível em: http://www.hort.purdue.edu/newcrop/ morton/surinam_cherry.html. Acesso em: 23 nov. 2011.

NGUYEN, N. T.; HIEP, N. D.; FUJITA, K. Iron enhances aluminum-induced leaf necrosis and plant growth inhibition in Eucalyptus camaldulensis. Plant and Soil, v. 277, p. 139-152, 2005.

SAHRAWAT, K. L. Iron toxicity in wetland rice and the role of other nutrients. Journal Plant Nutrition, v. 27, p. 1471-1504, 2004.

SILVEIRA, V. C. et al. Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Brazilian Journal of Plant Physiology, v. 12, p. 127-139, 2007.

Siqueira-Silva, A. I. et al. Iron plaque formation and morphoanatomy of roots from species of resting subjected to excess iron. Ecotoxicology and Environmental Safety, v. 78, p. 265-275, 2012.

ST-CYR, L.; CAMPBELL, P. G. C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry, v. 33, p. 45-76, 1996.

STEIN, R. R. J. et al. Distinct physiological responses subjected to iron toxicity under field conditions. Annals of Applied Biology, v. 154, p. 269-277, 2008.

TAYLOR, G. T.; CROWDER, A. A. Uptake and accumulation of copper, nickel and iron by Thypha latifolia grown in solution culture. Canadian Journal of Botany, v. 61, p.1825-1830, 1983.

WELLBURN, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrometers of different resolution. Journal of Plant Physiology, v. 144, p. 307-313, 1994.

ZHANG, X. K.; ZHANG, F. S.; MAO, D. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): phosphorus uptake. Plant and Soil, v. 209, p. 187-192, 1999.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.