Hyperspectral remote sensing as an alternative to estimate soil attributes

José Alexandre Melo Demattê, Marcelo Rodrigo Alves, Bruna Cristina Gallo, Caio Troula Fongaro, Arnaldo Barros e Souza, Danilo Jefferson Romero, Marcus Vinicius Sato

Resumo


Minimizing environmental impacts and increasing crop productivity depend mainly on the knowledge of chemical, physical and mineralogical characteristics of the soil attributes. However, traditional methods are time-consuming and costly. The objective of this study was to determine and validate a method to quantify soil attributes using UV-Vis-NIR Spectroscopy as an alternative to conventional methods of soil analyses. The work comprised two main phases: (1) creation and calibration of statistical models to determine the soil attributes derived from spectral data extracted from soil samples collected in area 1, (2) validation of statistical models in area 2 and correlations between the estimated and observed values (conventional method) for each soil attribute. The equations of the attributes Fe2O3, Al2O3, and clay reached R2 > 0.80 and may be applied to a different database than the one that was used to generate the equations, provided that they belong to the same study site.

 


Palavras-chave


Reflectance; Soil analysis; Remote Sensing

Texto completo:

PDF

Referências


BARNES, E. M. et al. Remote and ground-based sensor techniques to map soil properties. Photogrammetric Engineering & Remote Sensing, v. 69, n. 6, p. 619-630, 2003.

BEN-DOR, E.; BANIN, A. Near-Infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, v. 59, n. 2, p. 364-372, 1995a.

BEN-DOR, E.; BANIN, A. Near-Infrared analysis (Nira) as a method to simultaneously evaluate spectral featureless constituents in soils. Soil Science, v. 159, n. 4, p. 259-269, 1995b.

BEN-GERA, I.; NORRIS, K. Determination of moisture content in soybeans by direct spetrophotometry. Israel Journal of Agricultural Research, v. 18, p. 124-132, 1968.

BILGILI, A. V. et al. Visible- near infrared reflectance spectroscopy for assessment of soil properties in a semi- arid area of Turkey. Journal of Arid Environments, v. 74, n. 2, p. 229-238, 2010.

BROWN, D. J. et al. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, v. 132, n. 3/4, p. 273-290, 2006.

CAMARGO, A. O.; MONIZ, A. C.; VALADARES, J. M. Métodos de análise química, mineralógica e física de solos do IAC. Campinas: Instituto Agronômico de Campinas, 1986. p. 94.

CAMARGO, M. N.; KLANT, E.; KAUFFMAN, J. H. Classificação de Solos usada em Levantamentos Pedológicos no Brasil. Bol. Inf. SBCS, v. 12, p. 11-13, 1987.

CEZAR, E. et al. Estimativa de atributos do solo por meio de espectrorradiometria difusa. Revista Brasileira de Ciencia do Solo, v. 37, n. 4, p. 858-868, 2013.

CHANG, C. et al. Near-infrared recleftance spetroscopy - Principal components regression analysis os soil properties. Soil Science Society of America Journal, v. 65, n. 2, p. 480-490, 2001.

COLEMAN, T.L.; AGBU, P.A.; MONTGOMERY, O.L.; GAOT, T. & PRASAD, S. Spectral band selection for quantifying selected properties in highly weathered soils. Soil Science, v. 151, p.355-361, 1991.

DEMATTÊ, J. A. M.; GARCIA, G. J. Alteration of soil properties through a weathering sequence as evaluated by spectral reflectance. Soil Science Society of America Journal, v. 63, n. 2, p. 327-342, 1999.

DUNN, B. W. et al. The potential of near-infrared reflectance spectroscopy for soil analysis - a case study from the Riverine Plain of south-eastern Australia. Australian Journal of Experimental Agriculture, v. 42, n. 5, p. 607-614, 2002.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema brasileiro de classificação de solos. 2. ed. Rio de Janeiro: Embrapa Solos, 2006. p. 306.

GHOLIZADE, A. et al. Visible and near infrared reflectance spectroscopy to determine chemical properties of paddy soils. Journal of Food, Agriculture and Environment, v. 11, n. 2, p. 859-866, 2013.

GLANTZ, S. A.; SLINKER, B. K. Primer of applied regression and analysis of variance. New York: MacGraw-Hill, 1990. p. 320.

HUETE, A. R.; ESCADAFAL, R. Assessment of biophysical soil properties through spectral decomposition techniques. Remote Sensing of Environment. v. 35 n. 2/3, p. 149-159, 1991.

ISLAM, K.; SINGH, B.; McBRATNEY, A. B. Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research, v. 41, n. 6, p. 1101-1114, 2003.

KOBAYASHI, K.; SALAM, M. U. Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal, v. 92, n. 2, p. 345-352, 2000.

KUANG, B.; MOUAZEN, A. M. Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale. European Journal of Soil Science, v. 63, n. 3, p. 421-429, 2012.

LAGACHERIE, P. et al. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environmental, v. 112, n. 3, p. 825-835, 2008.

LEONE, A. P. et. al. Prediction of Soil Properties with PLSR and vis- NIR Spectroscopy: Application to Mediterranean Soils from Southern Italy. Current Analytical Chemistry, v. 8, n. 2, p. 283-299, 2012.

LOBELL, D. B.; ASNER, G. P. Moisture Effects on Soil Reflectance. Soil Science Society of America Journal, v. 66, n. 3, p. 722-727, 2002.

NANNI, M. R.; DEMATTÊ, J. A. M. Spectral methodology in comparison to traditional soil analysis. Soil Science Society of America Journal, v. 70, n. 2, p. 393-407, 2006.

PROBERT, M. E. et al. APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in follow systems. Agricultural Systems, v. 56, n. 1, p. 1-28, 1998.

RAIJ, B. Van. et al. Análise Química para Avaliação da Fertilidade de Solos Tropicais. Campinas: Instituto Agronômico de Campinas, 2001. p. 285.

SHEPHERD, K. D.; WALSH, M. G. Development of Reflectance Spectral Libraries for Characterization of Soil Properties. Soil Science Society of America Journal, v. 66, n. 3, p. 988-998, 2002.

SOUSA JUNIOR, J. G.; DEMATTÊ, J. A. M.; ARAÚJO, S. R. Modelos espectrais terrestres e orbitais na determinação de teores de atributos dos solos: potencial e custos. Bragantia, v. 7, n. 3, p. 610-621, 2011.

STARK, E.; LUCHTER, K.; MARGOSHES, M. Near-infrared analysis (NIRA): A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, v. 22, n. 4, p. 335-399, 1986.

STEVENS, A. et. al. Detection of carbon stock and change in agricultural soils using spectroscopy techniques. Soil Science Society of America Journal, v. 70, n. 3, p. 844-850, 2006.

VISCARRA ROSSEL, R. A. et al. Visible, near infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, v. 31, n. 1/2, p. 59-75, 2006.

VISCARRA ROSSEL, R. A. et al. On the soil information content of visible- near infrared reflectance spectra. European Journal of Soil Science, v. 62, n. 3, p. 442-453, 2011.

VISCARRA ROSSEL, R. A.; WEBSTER, R. Predicting soil properties from the Australian soil visible- near infrared spectroscopic database. European Journal of Soil Science, v. 63, n. 6, p. 848-860, 2012.

VOLKAN BILGILI, A.; van ES, H.M.; AKBAS, F.; DURAK, A.; HIVELY, W.D. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semiarid area of Turkey. Journal of Arid Environments, v. 74, p. 229-238, 2010.

WOLSCHICK, D. et al. Implementação e teste de um modelo mecanístico de simulação do crescimento e desenvolvimento de plantas de milho. Revista Brasileira de Engenharia Agricola e Ambiental, v. 11, n. 3, p. 271-278, 2007.

WORKMAN, J. J. Junior. Interpretive spectroscopy for near infrared. Applied Spectroscopy Reviews, v. 31, n. 3, p. 251-320, 1996.




Revista Ciência Agronômica ISSN 1806-6690 (online) 0045-6888 (impresso), Site: www.ccarevista.ufc.br, e-mail: ccarev@ufc.br - Fone: (85) 3366.9702 - Expediente: 2ª a 6ª feira - de 7 às 17h.